
M A N N I N G

Ian W. Stirk

Better queries with
Dynamic Management Views

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Server DMVs in Action

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Server
DMVs in Action

BETTER QUERIES WITH
DYNAMIC MANAGEMENT VIEWS

IAN W. STIRK

M A N N I N G
Shelter Island
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Katharine Osborne
20 Baldwin Road Copyeditor: Linda Recktenwald
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781935182733
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11
www.it-ebooks.info

http://www.manning.com
mailto:orders@manning.com
http://www.it-ebooks.info/

 To Joan, Karen, and Catherine,
 for yesterday, today, and tomorrow
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

brief contents
PART 1 STARTING THE JOURNEY. ..1

1 ■ The Dynamic Management Views gold mine 3

2 ■ Common patterns 31

PART 2 DMV DISCOVERY...53
3 ■ Index DMVs 55

4 ■ Improving poor query performance 92

5 ■ Further query improvements 118

6 ■ Operating system DMVs 147

7 ■ Common Language Runtime DMVs 174

8 ■ Resolving transaction issues 196

9 ■ Database-level DMVs 226

10 ■ The self-healing database 257

11 ■ Useful scripts 285
vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents
preface xix
acknowledgements xx
about this book xxii

PART 1 STARTING THE JOURNEY1

1 The Dynamic Management Views gold mine 3
1.1 What are Dynamic Management Views? 4

A glimpse into SQL Server’s internal data 7
Aggregated results 8 ■ Impact of running DMVs 8
Part of SQL Server 2005 onward 8

1.2 The problems DMVs can solve 9
Diagnosing problems 9 ■ Performance tuning 10
Monitoring 10

1.3 DMV examples 13
Find your slowest queries 14 ■ Find those
missing indexes 15 ■ Identify what SQL statements are
running now 17 ■ Quickly find a cached plan 18

1.4 Preparing to use DMVs 22
Permissions 22 ■ Clearing DMVs 22
ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
1.5 DMV companions 23
Catalog views 24 ■ Cached plans 24
Indexes 25 ■ Statistics 25

1.6 Working with DMVs 26
In context with other tools 26 ■ Self-healing
database 28 ■ Reporting and transactional databases 29

1.7 Summary 30

2 Common patterns 31
2.1 Reducing blocking 32
2.2 Using CROSS APPLY 32
2.3 Restricting output to a given database 32
2.4 Restricting output by using the TOP command 33
2.5 Creating an empty temporary table structure 34
2.6 Looping over the databases on a server 35
2.7 Retrieving a query’s cached plan and SQL text 37
2.8 Extracting the Individual Query from the

Parent Query 38
2.9 Identifying the database used by ad hoc queries 39

2.10 Calculating DMV changes 40
2.11 Reading cached plans 43

Targeting the area of concern 43 ■ Things to look out for 44

2.12 Building dynamic SQL 47
2.13 Printing the content of large variables 48
2.14 Common terms and acronyms 49
2.15 Known problems that may affect the scripts 50

SQL Server compatibility level set to below 2005 50
An OFFLINE database 50

2.16 Summary 51

PART 2 DMV DISCOVERY ...53

3 Index DMVs 55
3.1 The importance of indexes 56

Types of index 56 ■ Types of index access 57
Factors affecting index performance 58
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
3.2 Costly missing indexes 62
Finding the most important missing indexes 62 ■ The impact
of missing indexes 64

3.3 Unused indexes 65
Finding the most-costly unused indexes 66 ■ The impact
of unused indexes 68

3.4 High-maintenance indexes 69
Finding the top high-maintenance indexes 69 ■ The impact
of high-maintenance indexes 71

3.5 Most-frequently used indexes 72
Finding the most-used indexes 72 ■ The importance
of the most-used indexes 74

3.6 Fragmented indexes 75
Finding the most-fragmented indexes 75 ■ The impact
of fragmented indexes 77

3.7 Indexes used by a given routine 78
Finding the indexes used by a given routine 78
The importance of knowing which indexes are used 81

3.8 Databases with most missing indexes 83
Finding which databases have the most missing indexes 84
The importance of other databases 84

3.9 Completely unused indexes 85
Finding which indexes aren’t used at all 85 ■ The importance
of unused indexes 87

3.10 Your statistics 87
Finding the state of your statistics 88 ■ The importance
of statistics 89

3.11 A holistic approach to managing indexes 90
3.12 Summary 91

4 Improving poor query performance 92
4.1 Understanding executed queries 93

Aggregated results 93 ■ Clearing the cached plans 93

4.2 Finding a cached plan 94
How to find a cached plan 94
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
4.3 Finding where a query is used 97
Identifying where a query is used 97

4.4 Long-running queries 98
Finding the queries that take the longest time to run 99
The impact of long-running queries 101

4.5 Queries that spend a long time being blocked 103
Finding the queries that spend the longest time being blocked 104

4.6 CPU-intensive queries 106
Finding the queries that use the most CPU 106

4.7 I/O-hungry queries 108
Finding the queries that use the most I/O 109
Reducing the impact of queries that use the most I/O 110

4.8 Frequently executed queries 111
Finding the queries that have been executed the most often 111
Reducing the impact of queries that are executed most often 113

4.9 The last run of a query 114
Determining when a query was last run 114 ■ Variations on
searching for queries 115

4.10 Summary 116

5 Further query improvements 118
5.1 Queries with missing statistics 119

Finding queries that have missing statistics 119 ■ The importance
of statistics 121 ■ Default statistics properties 122

5.2 Finding queries that have missing indexes 123
5.3 Finding queries that have implicit data type

conversions 124
Finding implicit data conversions 125 ■ Finding disparate
column data types 125

5.4 Finding queries that have table scans 127
5.5 Slower-than-normal queries 127

Finding queries that are running slower than normal 128
The importance of queries that are running slower
than normal 131

5.6 Unused stored procedures (2008 only) 132
Finding unused stored procedures 133
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii
5.7 Looking for SQL queries run during a
specific interval 134
What runs over a given time period? 134

5.8 Relationships between DMV snapshot deltas 137
Amalgamated DMV snapshots 137

5.9 Currently running queries 142
What’s running now? 142

5.10 Recompiled queries 144
Finding the most-recompiled queries 144

5.11 Summary 146

6 Operating system DMVs 147
6.1 Understanding server waits 148
6.2 Identifying your most common waits 148

Why are you waiting? 149 ■ Common wait types 151

6.3 Identifying your most common waits—snapshot
version 152
Why are you waiting? (snapshot version) 153

6.4 Identifying why queries wait 154
Discovering why your queries are waiting 154

6.5 Queries that are waiting 157
6.6 Finding what’s blocking running SQL 158

What’s blocking my SQL query? 158

6.7 SQL Server performance counters 160
Important non-SQL performance counters 162

6.8 Effect of running SQL queries on the performance
counters 164

6.9 How performance counters and wait states relate 165
6.10 SQL queries and how they change the performance

counters and wait states 168
6.11 Correlating wait states and performance counters 171
6.12 Capturing DMV data periodically 172
6.13 Summary 173
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxiv
7 Common Language Runtime DMVs 174
7.1 Introducing the CLR 175
7.2 A simple CLR example 176

Creating a simple CLR class 176 ■ Using the SQL CLR
regular expression functions 179

7.3 .NET Framework performance concerns 181
7.4 Time-consuming CLR queries 183

Finding the queries that spend the most time in the CLR 183
Impact of time-consuming CLR queries 185

7.5 Queries spending the most time in the CLR
(snapshot version) 186
Finding queries that spend the most time in the CLR
(snapshot version) 186

7.6 Relationships between CLR DMVs and other DMVs 188
7.7 Getting information about SQL Server CLR

integration 192
7.8 Getting information about your SQL CLR

assemblies 193
7.9 Summary 195

8 Resolving transaction issues 196
8.1 Transaction overview 197
8.2 A simple transaction-based case study 198
8.3 Locks, blocks, and deadlocks 200

Locks 200 ■ Blocks 202 ■ Deadlocks 203

8.4 The ACID properties of transactions 205
8.5 Transaction isolation levels 205
8.6 Sessions, connections, and requests 206
8.7 Finding locks 207
8.8 Identifying the contended resources 209

Contended resources—basic version 209 ■ Contended resources—
enhanced version 210

8.9 Identifying inactive sessions with open transactions 212
How idle sessions with open transactions arise 213 ■ How to find
an idle session with an open transaction 213
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xv
8.10 Waiting due to transaction locks 214
Waiting because of an idle session with an
open transaction 215 ■ Waiting because of active session
transactions only 217 ■ Waiting because of both active
and idle session transactions 218

8.11 Queries waiting for more than 30 seconds 219
8.12 Lock escalation 220
8.13 How to reduce blocking 221
8.14 How to reduce deadlocks 224
8.15 Summary 225

9 Database-level DMVs 226
9.1 Space usage in tempdb 227

What is tempdb? 227 ■ Total, free, and used space
in tempdb 228 ■ Tempdb total space usage by object type 230

9.2 Session usage in tempdb 231
Session usage of tempdb space 232 ■ Space used and not reclaimed
in tempdb by session 233

9.3 Task usage in tempdb 235
Space used by running SQL queries 235 ■ Space used and not
reclaimed by active SQL queries 237

9.4 Tempdb recommendations 239
9.5 Index contention 240

Indexes under row-locking pressure 241
Escalated indexes 243 ■ Unsuccessful index-lock
promotions 244 ■ Indexes with the most
page splits 245 ■ Indexes with most latch contention 247
Indexes with most page I/O-latch contention 248 ■ Indexes under
row-locking pressure—snapshot version 249 ■ How many rows
are being inserted/deleted/updated/selected? 252

9.6 Summary 256

10 The self-healing database 257
10.1 Self-healing database 258
10.2 Recompiling slow routines 259

Recompiling routines that are running slower than usual 259
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxvi
10.3 Automatically rebuild and reorganize indexes 264
Rebuilding and reorganizing fragmented indexes 264

10.4 Intelligently update statistics 268
Simple intelligent statistics update 269 ■ Time-based intelligent
statistics update 272

10.5 Automatically updating a routine’s statistics 276
10.6 Automatically implement missing indexes 279

Implementing missing indexes 279

10.7 Automatically disable or drop unused indexes 281
Disabling or dropping unused indexes 282

10.8 Summary 284

11 Useful scripts 285
11.1 Viewing everyone’s last-run SQL query 286

Find the last-run queries 286

11.2 A generic performance test harness 287
Using the generic performance test harness 288

11.3 Determining the impact of a system upgrade 290
Quantifying system upgrade impact 290

11.4 Estimating the finishing time of system jobs 293
Estimating when a job will end 294

11.5 Get system information from within SQL Server 295
11.6 Viewing enabled Enterprise features (2008 only) 297
11.7 Who’s doing what and when? 298
11.8 Finding where your query really spends its time 300

Locating where your queries are spending their time 300

11.9 Memory usage per database 303
Determining the memory used per database 303

11.10 Memory usage by table or index 304
Determining the memory used by tables and indexes 304

11.11 Finding I/O waits 307
I/O waits at the database level 307 ■ I/O waits at the
file level 308 ■ Average read/write times per file,
per database 310
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xvii
11.12 A simple lightweight trace utility 311
11.13 Some best practices 313
11.14 Where to start with performance problems 314

Starting with a slow server or database 314 ■ Starting with
slow queries 315

11.15 Summary 316

index 317
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

preface
When I first discovered DMVs, I was enthralled because they made many difficult
things so easy. It was simple to identify, typically within seconds, the core perfor-
mance problems that affect SQL Server databases. For example, I could quickly
discover which queries were taking the longest time to run, which indexes were miss-
ing, and why queries were being blocked. This was only the tip of the iceberg; the
deeper I dug into DMVs, the more information they provided to help me fix perfor-
mance problems.

 Although I was captivated by the power of DMVs, I was frustrated because there was
very little awareness, even among experienced DBAs, of their existence. In response to
this I wrote an article for Microsoft’s MSDN magazine that was published in January
2008, which showed how useful DMVs could be. I then waited, expecting someone to
write a book about the subject.

 Time passed, and although several articles about DMVs were subsequently pub-
lished, the book I wanted to read was not forthcoming. So late in 2009 I contacted
Manning Publications to discuss the possibility of writing such a book. You’re now
holding the fruit of that conversation.

 I’m confident this book will help you successfully identify and target your perfor-
mance problems as well as suggest solutions to these problems, giving you better-
performing SQL Server databases.

 It’s heartening to hear comments from people when they first discover the power
of DMVs; they too are amazed at how easily DMVs can help identify problems and pro-
pose possible solutions to these problems. Like me, they’re probably mystified why
DMVs aren’t more widely used. I hope this book will help correct this situation.
xix

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgements
I’d like to start off by thanking the whole Manning team, in particular Katharine
Osborne, Michael Stephens, Marjan Bace, Mary Piergies, Janet Vail, Linda Reckten-
wald, Katie Tennant, and Dennis Dalinnik. Thank you, Katharine, for your profession-
alism and steering me in the right direction, and thank you Michael and Marjan for
believing the subject of DMVs could make an important contribution to improving
SQL performance. I’m indebted to the Manning production team, Mary, Janet, Linda,
Katie, and Dennis, for guiding me through the production process and helping make
this a better book.

 I’d like to express my thanks to Elvira Chierkoet, for checking and reading every
sentence and helping ensure my ideas were sensible.

 To the technical reviewers, I want to thank you for your feedback and for making
this a more accurate book: Tariq Ahmed, Christian Siegers, Nikander Bruggeman,
Margriet Bruggeman, Amos Bannister, Richard Siddaway, Sumit Pal, Dave Corun, and
Sanchet Dighe, and special thanks to the main technical reviewer, Deepak Vohra.

 I want to give a special thank-you to Karen Stirk, Catherine Stirk, and Charlie for
their support and encouragement. A special thank-you is owed to my grandparents,
Joan and Bill Bridgewater, and the rest of the Bridgewater family (Karen, Timmy,
Brenda, Caroline, Kenny, Patty, Jenny, Mary, Jacky, David, and Diane). And thanks also
to my old chemistry teacher, Jim Galbraith. Without these people, I would have
turned out a lesser person.

 I’ve been lucky enough to know some interesting and helpful people, both as
friends and colleagues, and I’d like to thank you all: Tim Noakes, Dave Starkey,
xx

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGEMENTS xxi
Mark Hadley, Gerald Hemming, Albert Morris, Martin Gunning, Chris Conn, Roy
Carter, Mark Woodward, Kevin Bowen, Lee Humphries, Steven Hines, Gus Oliver,
Jason Hales, Marina Barbosa, Mark Barrett, Chris Ambrose, John Dillon, Jeremy
Braithwaite, Ken Piddlesden, Steve Forrester, Maria Lynch, Ernie French, Chris
Cuddy, Sean Farmer, Michael O’Boyle, Ione Farias, Suresh Konduru, Francis Spencer,
Iain Roy, Paul Williams, Doug Victor, Paul Weeks, John Cousins, Dale Rainsford,
Scott Eggert, Julie Mathews, Pierre Bressollette, Manuel Dambrine, Alexander
Godschalk, Lars Grønkjær, Raimond Bakkes, Yan Huang, Chris Homer, Lasse Lundby
Franck, Andy van Dongen, Shobha Mittal, Jeroen Ameling, Alek Kudic, Ruud
Lemmers, Henk Leppers, Patricia Pena Torres, David Fanning, Mike Diment, Livia
Raele, Raj Kissan, Alex Rougge, David Barker, Ron Finch, Tina Simon, John
Predgen, Dave Fisher, Phil Fielding, Brian Wright, Maria Iturburu, Jerome Farnon,
Harbans Heer, David Randall, Bruce Pitman, Lawrence Moore, Manal Koujan, Mike
Bowler, Angela Dedeng, Russell Case, Cornelius van Berkel, Sarah Hamed, and
Michael Hipkin.
www.it-ebooks.info

http://www.it-ebooks.info/

about this book
This book captures a wealth of experience that can be used along with code snip-
pets to immediately improve the performance of your databases. SQL Server is find-
ing its way into an increasing number of businesses. Although most servers are
conspicuous, some appear almost hidden, for example, SharePoint servers and Cus-
tomer Relationship Management (CRM) servers. In addition, increasing amounts of
data are getting stored within SQL Server. Both of these trends have a bearing on the
performance of your SQL Server databases and queries. You can use the advice and
code snippets given in this book to fight back and reclaim your high-performing
SQL Server.

Who should read this book?
If you want to improve the performance of your SQL Server databases and the queries
that run on them, you should buy this book.

 Anyone who wants to ensure their SQL Server databases are running as effi-
ciently as possible will find this book very useful. The following groups of people in
particular will find this book valuable: database administrators (DBAs), developers
working with SQL Server, and administrators of SharePoint servers, CRM systems, and
similar servers.

 When a new version of a software product appears, for example, Microsoft Word or
SQL Server, new features are typically added to the existing core. Microsoft Word is
still primarily used to enter and store text; this core functionality hasn’t changed,
despite the numerous version releases. Similarly, although this book is written primarily
xxii

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii
for SQL Server 2005 and 2008, the core functionality of the DMVs is unlikely to
change in future versions (for example, SQL Server 2011), and so it should be applica-
ble to future versions too.

DBAs need to ensure the databases under their command are running as efficiently
as possible. Running the code snippets provided in this book will identify any problem
areas and help provide solutions to these problems.

 Developers need to ensure their applications can retrieve and store data efficiently.
Using the supplied code snippets, developers will be able to ensure appropriate
indexes are being used, the data is being retrieved efficiently, and any changes are
tested for defined improvement.

 Increasingly, SharePoint servers, CRM servers, and similar servers that have SQL
Server as their underlying database are being installed in organizations with little
thought for ongoing maintenance. With time, the performance of these unattended
servers can degrade. Applying the code snippets included in this book will identify
areas where performance can be improved.

 One final point: Often organizations install third-party applications on their SQL
Servers. Although it’s usually not possible to change the code in these applications, it
is possible to run the code snippets in this book against these databases, with a view to
either applying any missing indexes (if this is allowed) or providing feedback to the
third party to make the required changes.

Roadmap
This book contains 100-plus code snippets to help you investigate your SQL Server data-
bases. In addition to identifying the problem areas, potential solutions are discussed.

 The book is divided into two sections. The first section provides an overview of
what DMVs are and how they can identify and solve problems easily and quickly. In
addition, this section contains details of common patterns that are used throughout
the rest of the book. The second section contains scripts and discussions for improv-
ing performance relating to indexes, queries, the operating system, the Common Lan-
guage Runtime (CLR), transactions, space usage, and much more. Using the code
snippets and advice given in this section will provide you with a more optimally per-
forming SQL Server.

 Chapter 1 provides an overview of the power of DMVs. It shows you what DMVs are
and why they’re important. Various examples are given to get you investigating your
performance problems in seconds. Structures such as indexes and statistics are dis-
cussed in the context of DMVs. Finally, DMVs are discussed in the context of other per-
formance tools.

 Chapter 2 discusses common patterns that are used throughout the book. Rather
than describing these patterns everywhere, they are discussed once in this chapter and
referenced in the rest of the book.
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxiv
 Chapter 3 looks at index-based DMVs. Indexes are a great tool for improving the
performance of your SQL queries. However, unused or little-used indexes can have a
detrimental effect on performance. The code snippets included in this chapter will
help you improve your index usage, resulting in improved SQL queries.

 Chapter 4 takes a look at DMVs that relate to your queries. Code snippets are pro-
vided to identify your slowest-running queries, queries that are blocked the most, que-
ries that use the most CPU, and queries that use the most I/O. All these snippets allow
you to investigate performance problems from differing viewpoints.

 Chapter 5 is an extension of chapter 4, discussing further aspects of how to
improve the performance of your queries.

 Chapter 6 relates to operating system DMVs. It discusses why your queries, as a
whole, are not able to run, what resources they’re waiting for, and how these resources
can be improved to give faster queries. Windows performance counters are also exam-
ined in relation to these collective queries.

 Chapter 7 focuses on the Common Language Runtime DMVs. The use of the CLR
within SQL Server is illustrated with a CLR class that provides regular expression func-
tionality for use within your own SQL queries.

 Chapter 8 opens with a look at transactions, locking, blocking, and deadlocks. A
small case study is provided to illustrate the transaction-based DMV code snippets.
Ways of reducing both blocking and deadlocking are explored.

 Chapter 9 discusses database-related DMVs. The first section discusses the impor-
tance of tempdb and shows how to examine its usage when space problems arise. The
second section examines various aspects of index usage that can help you diagnose
and improve your queries.

 Chapter 10 contains code snippets that can be used to automatically improve the
performance of your SQL Server databases. Snippets include intelligently updating
statistics, recompiling slow routines, and implementing missing indexes.

 Chapter 11 has useful snippets that don’t fit into any of the other chapters. The
snippets include a generic test harness, estimating the finishing time of jobs, how
memory is used by your database, and a simple lightweight DMV trace utility.

Code conventions and downloads
All source code in listings or set off from the text is in a fixed-width font like this
to separate it from ordinary text. Code annotations accompany many of the listings,
highlighting important concepts. In some cases, numbered bullets link to explana-
tions that follow the listing.

 The source code for all of the examples in the book is available from the pub-
lisher’s website at www.manning.com/SQLServerDMVsinAction.
www.it-ebooks.info

http://www.manning.com/SQLServerDMVsinAction
http://www.it-ebooks.info/

ABOUT THIS BOOK xxv
Author Online
The purchase of SQL Server DMVs in Action includes free access to a private forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and other users. You can access and
subscribe to the forum at www.manning.com/SQLServerDMVsinAction. This page pro-
vides information on how to get on the forum once you’re registered, what kind of
help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contributions to the book’s forum remain voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
I love to investigate and discover new things, play around with ideas, and just spend
time in thought. The mind can be a wonderful playground. I’m lucky enough that my
inquisitive nature has found a natural home among the problems in the software
industry. As Churchill commented, “If you find a job you really love, you’ll never work
again.” With this in mind, the boundary between work and play often dissolves.

 As an example of my curiosity, I remember as a child examining a droplet of water
on my fingertip and noticing that the droplet magnified the detail of my fingerprints.
It made me wonder if an earlier civilization (such as the Romans, who had used glass)
had also noticed this, and if they did, why they didn’t develop experiments that would
have led to the earlier introduction of the study of optics and the advancement of sci-
ence and civilization.

 I’ve worked in the software industry since 1987, using a variety of platforms and
programming languages. I’ve worked in a variety of business areas, including banking,
insurance, health, telecoms, travel, finance, software, and consultancies. Since 1995
I’ve worked freelance.

 My core competencies are primarily Microsoft-based technologies, with an empha-
sis on software performance, which naturally extends into database performance. I’m
also interested in the developing mobile technologies.

 In the course of my work I often create software utilities; when possible I author
articles on these utilities to share with other developers. I feel it’s important to give
something back to the industry that provides me with a living.

 On a final note, I’m a freelance consultant, and I’m available to help improve the
performance of your SQL Servers. You can contact me for availability and cost at
ian_stirk@yahoo.com.
www.it-ebooks.info

http://www.manning.com/SQLServerDMVsinAction
mailto:ian_stirk@yahoo.com
http://www.it-ebooks.info/

ABOUT THIS BOOKxxvi
About the cover illustration
The figure on the cover of SQL Server DMVs in Action is captioned “Habit of Aureng-
zeeb” and is taken from the four-volume Collection of the Dresses of Different Nations by
Thomas Jefferys, published in London between 1757 and 1772. The collection, which
includes beautifully hand-colored copperplate engravings of costumes from around
the world, has influenced theatrical costume design ever since it was published.
Aurengzeb was the name given to the sixth Mughal Emperor of India, whose reign
lasted from 1658 until his death in 1707. The name means “ornament of the throne.”
He was a warrior and conqueror, greatly expanding the reach of his empire during his
lifetime. His exploits were the topic of many poems, legends, and dramas.

 The diversity of the drawings in the Collection of the Dresses of Different Nations speaks
vividly of the richness of the costumes presented on the London stage over 200 years
ago. The costumes, both historical and contemporaneous, offered a glimpse into the
dress customs of people living in different times and in different countries, bringing
them to life for London theater audiences.

 Dress codes have changed in the last century and the diversity by region, so rich in
the past, has faded away. It’s now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and
visual diversity for a more varied personal life. Or a more varied and interesting intel-
lectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional and historical
costumes brought back to life by pictures from collections such as this one.
www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Starting the journey

You’re lucky. You’re about to embark on a rewarding journey with the goal of
improving your SQL Server performance problems using DMVs. This part pro-
vides an overview of what DMVs are and the range of problems they can solve.
You’ll be able to use the basic examples provided to immediately begin identify-
ing and fixing your performance problems. Various common patterns that are
used repeatedly throughout the book are detailed here. This section provides a
solid foundation for the rest of the book.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Dynamic
Management

Views gold mine
Welcome to the world of Dynamic Management Views (DMVs). How would you like
to fix problems on your SQL Servers with little effort? Or fix problems before they
become noticeable by irate users? Would you like to quickly discover the slowest
SQL queries on your servers? Or get details of missing indexes that could signifi-
cantly improve the performance of your queries? All these things and more are eas-
ily possible, typically in a matter of seconds, using DMVs.

 In a nutshell, DMVs are views on internal SQL Server metadata, and they can
be used to significantly improve the performance of your SQL queries, often by
an order of magnitude. A more thorough definition of DMVs follows in the
next section.

 The first part of fixing any problem is knowing what the underlying problem is.
DMVs can give you precisely this information. DMVs will pinpoint where many of
your problems are, often before they become painfully apparent.

This chapter covers
■ What Dynamic Management Views are
■ Why they’re important
■ Ready-to-run practical examples
3

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 The Dynamic Management Views gold mine
DMVs are an integral part of Microsoft’s flagship database SQL Server. Although
they have existed since SQL Server 2005, their benefits are still relatively unknown,
even by experienced software developers and database administrators (DBAs). Hope-
fully this book will help correct this deficit.

 The aim of this book is to present and explain, in short snippets of prepackaged
SQL that can be used immediately, DMV queries that will give you a valuable insight
into how your SQL Server and the queries running on it can be improved, often dra-
matically, quickly and easily.

 In this chapter you’ll learn what DMVs are, the kinds of data they contain, and
the types of problems DMVs can solve. I’ll outline the major groups the DMVs are
divided into and the ones we’ll be concentrating on. I’ll provide several example
code snippets that you’ll find immediately useful. DMVs will be discussed briefly in
the context of other problem-solving tools and related structures (for example,
indexes and statistics).

 I’m sure that after reading this chapter you’ll be pleasantly surprised when you
discover the wealth of information that’s available for free within SQL Server that
can be accessed via DMVs and the impressive impact using this information can have.
The DMV data is already out there waiting to be harvested; in so many ways it’s a
gold mine!

1.1 What are Dynamic Management Views?
As queries run on a SQL Server database, SQL Server automatically records informa-
tion about the activity that’s taking place, internally into structures in memory; you
can access this information via DMVs. DMVs are basically SQL views on some pretty
important internal memory structures.

 Lots of different types of information are recorded that can be used for subse-
quent analysis, with the aim of improving performance, troubleshooting problems, or
gaining a better insight into how SQL Server works.

DMV information is stored on a per–SQL Server instance level. You can, however,
provide filtering to extract DMV data at varying levels of granularity, including for a
given database, table, or query.

DMV information includes metrics that relate to indexes, query execution, the oper-
ating system, Common Language Runtime (CLR), transactions, security, extended
events, Resource Governor, Service Broker, replication, query notification, objects,
input/output (I/O), full-text search, databases, database mirroring, change data cap-
ture (CDC), and much more. In addition, many corollary areas enhance and extend
the DMV output. I’ll discuss these a little later, in the section titled “DMV companions.”

 Don’t worry if you’re not familiar with all these terms; the purpose of this
book is to help explain them and present examples of how you can use them to
improve the performance and your understanding of your SQL queries and SQL
Server itself.
www.it-ebooks.info

http://www.it-ebooks.info/

5What are Dynamic Management Views?
 Most sources categorize DMVs in the same manner that Microsoft has adopted,
based on their area of functionality. This book takes a similar approach. A brief out-
line of each of the DMV categories follows in table 1.1.

Table 1.1 The major DMV groups

DMV group Description

Change data capture Change data capture relates to how SQL Server captures change activity
(inserts, updates, and deletes) across one or more tables, providing cen-
tralized processing. It can be thought of as a combination of trigger and
auditing processing in a central area. These DMVs contain information
relating to various aspects of change data capture, including transac-
tions, logging, and errors. This group of DMVs occurs in SQL Server
2008 and higher.

Common Language
Runtime

The Common Language Runtime allows code that runs on the database to
be written in one of the .NET languages, offering a richer environment and
language and often providing a magnitude increase in performance. These
DMVs contain information relating to various aspects of the .NET Common
Language Runtime, including application domains (these are wider in
scope than a thread and smaller than a session), loaded assemblies, prop-
erties, and running tasks.

Database These DMVs contain information relating to various aspects of databases,
including space usage, partition statistics, and session and task space
information.

Database mirroring The aim of database mirroring is to increase database availability. Transac-
tion logs are moved quickly between servers, allowing fast failover to the
standby server. These DMVs contain information relating to various
aspects of database mirroring, including connection information and page-
repair details.

Execution These DMVs contain information relating to various aspects of query execu-
tion, including cached plans, connections, cursors, plan attributes, stored
procedure statistics, memory grants, query optimizer information, query
statistics, active requests and sessions, SQL text, and trigger statistics.

Extended events Extended events allow SQL Server to integrate into Microsoft’s wider
event-handling processes, allowing integration of SQL Server events with
logging and monitoring tools. This group of DMVs occurs in SQL Server
2008 and higher.

Full-text search Full-text search relates to the ability to search character-based data using
linguistic searches. This can be thought of as a higher-level wildcard
search. These DMVs contain information relating to various aspects of full-
text search, including existing full-text catalogs, index populations cur-
rently occurring, and memory buffers/pools.

Index These DMVs contain information relating to various aspects of indexes,
including missing indexes, index usage (number of seeks, scans, and look-
ups, by system or application, and when they last occurred), operational
statistics (I/O, locking, latches, and access method), and physical statis-
tics (size and fragmentation information).
www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 The Dynamic Management Views gold mine
Because this book takes a look at DMVs from a practical, everyday troubleshooting and
maintenance perspective, it concentrates on those DMVs that the DBA and database
developer will use to help solve their everyday problems. With this in mind, it concen-
trates on the following categories of DMV:

■ Index
■ Execution
■ SQL Server Operating System

Input/Output (I/O) These DMVs contain information relating to various aspects of I/O, includ-
ing virtual file statistics (by database and file, number of reads/writes,
amount of data read/written, and I/O stall time), backup tape devices, and
any pending I/O requests.

Object These DMVs contain information relating to various aspects of dynamic
management objects; these relate to object dependencies.

Query notification These DMVs contain information relating to various aspects of query notifi-
cation subscriptions in the server.

Replication These DMVs contain information relating to various aspects of replica-
tion, including articles (type and status), transactions, and schemas
(table columns).

Resource Governor In the past, running inappropriate ad hoc queries on the database
sometimes caused timeout and blocking problems. SQL Server 2008
implements a resource governor that controls the amount of resources
different groups can have, allowing more controlled access to resources.
These DMVs contain information relating to various aspects of Resource
Governor, including resource pools, governor configuration, and workload
groups. This group of DMVs occurs in SQL Server 2008 and higher.

Service Broker Service Broker is concerned with providing both transactional and discon-
nected processing, allowing a wider range of architectural solutions to be
created. These DMVs contain information relating to various aspects of
Service Broker, including activated tasks, forwarded messages, connec-
tions, and queue monitors.

SQL Server Operating
System

These DMVs contain information relating to various aspects of the SQL
Server Operating System (SQLOS), including performance counters, mem-
ory pools, schedulers, system information, tasks, threads, wait statistics,
waiting tasks, and memory objects.

Transaction These DMVs contain information relating to various aspects of transac-
tions, including snapshot, database, session, and locks.

Security These DMVs contain information relating to various aspects of security,
including audit actions, cryptographic algorithms supported, open
cryptographic sessions, and database encryption state (and keys).

Table 1.1 The major DMV groups (continued)

DMV group Description
www.it-ebooks.info

http://www.it-ebooks.info/

7What are Dynamic Management Views?
■ Common Language Runtime
■ Transaction
■ Input/Output
■ Database

If there’s sufficient subsequent interest, perhaps another book could be written about
the other DMV groups.

1.1.1 A glimpse into SQL Server’s internal data

As an example of what DMV information is captured, consider what happens when you
run a query. An immense range of information is recorded, including the following:

■ The query’s cached plan (this describes at a low level how the query is executed)
■ What indexes were used
■ What indexes the query would like to use but can’t, because they’re missing
■ How much I/O occurred (both physical and logical)
■ How much time was spent executing the query
■ How much time was spent waiting on other resources
■ What resources the query was waiting on

Being able to retrieve and analyze this information will not only give you a better
understanding of how your query works but will also allow you to produce better que-
ries that take advantage of the available resources.

 In addition to DMVs, several related functions work in conjunction with DMVs,
named Dynamic Management Functions (DMFs). In many ways DMFs are similar to stan-
dard SQL functions, being called repeatedly with a DMV-supplied parameter. For
example, the DMV sys.dm_exec_query_stats records details of the SQL being pro-
cessed via a variable named sql_handle. If this sql_handle is passed as a parameter to
the DMF sys.dm_exec_sql_text, the DMF will return the SQL text of the stored proce-
dure or batch associated with this sql_handle.

 All DMVs and DMFs belong to the sys schema, and when you reference them you
must supply this schema name. The DMVs start with the signature of sys.dm_*, where
the asterisk represents a particular subsystem. For example, to determine what
requests are currently executing, run the following:

SELECT * FROM sys.dm_exec_requests

Note that this query will give you raw details of the various requests that are currently
running on your SQL Server; again, don’t worry if the output doesn’t make much
sense at the moment. I’ll provide much more useful and understandable queries that
use sys.dm_exec_requests later in the book, in the chapter related to execution DMVs
(chapter 5).
www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 The Dynamic Management Views gold mine
1.1.2 Aggregated results

The data shown via DMVs is cumulative since the last SQL Server reboot or restart.
Often this is useful, because you want to know the sum total effect for each of the que-
ries that have run on the server instance or a given database.

 But if you’re interested only in the actions of a given run of a query or batch, you
can determine the effect of the query by taking a snapshot of the relevant DMV data,
run your query, and then take another snapshot of the DMV data. Getting the delta
between the two snapshots will provide you with details of the effect of the query that
was run. An example of this approach is shown later, in the chapter concerning com-
mon patterns, section 2.10, “Calculating DMV changes.”

1.1.3 Impact of running DMVs

Typically, when you query the DMVs to extract important diagnostic information, this
querying has a minimal effect on the server and its resources. This is because the data
is in memory and already calculated; you just need to retrieve it. To further reduce the
impact of querying the DMVs, the sample code is typically prefixed with a statement
that ignores locks and doesn’t acquire any locks.

 There are cases where the information isn’t initially or readily available in the
DMVs. In these cases, the impact of running the query may be significant. Luckily
these DMVs are few in number, and I’ll highlight them in the relevant section. One
such DMV is used when calculating the degree of index fragmentation (sys.dm_db_
index_physical_stats).

 In summary, compared with other methods of obtaining similar information, for
example by using the Database Tuning Advisor or SQL Server Profiler, using DMVs is
relatively unobtrusive and has little impact on the system performance.

1.1.4 Part of SQL Server 2005 onward

DMVs and DMFs have been an integral part of SQL Server since version 2005. In SQL
Server 2005 there are 89 DMVs (and DMFs), and in SQL Server 2008 there are 136
DMVs. With this in mind, this book will concentrate on versions of SQL Server 2005
and higher. It’s possible to discover the range of these DMVs by examining their
names, by using the following query:

SELECT name, type_desc FROM sys.system_objects WHERE name LIKE

➥'dm_%' ORDER BY name

In versions of SQL Server prior to 2005, getting the level of detailed information given
by DMVs is difficult or impossible. For example, to obtain details of the slowest que-
ries, you’d typically have to run SQL Trace (this is the precursor of SQL Server Pro-
filer) for a given duration and then spend a considerable amount of time analyzing
and aggregating the results. This was made more difficult because the parameters for
the same queries would often differ. The corresponding work using DMVs can usually
be done in seconds.
www.it-ebooks.info

http://www.it-ebooks.info/

9The problems DMVs can solve
1.2 The problems DMVs can solve
In the section titled “What are Dynamic Management Views?” I briefly mentioned the
different types of data that DMVs record. I can assure you that this range is matched by
depth too. DMVs allow you to view a great deal of internal SQL Server information
that’s a great starting point for determining the cause of a problem and provide
potential solutions to fix many problems or give you a much better understanding of
SQL Server and your queries.

NOTE DMVs aren’t the sole method of targeting the source of a problem or
improving subsequent performance, but they can be used with other tools to
identify and correct concerns.

The problems DMVs can solve can be grouped into diagnosing, performance tuning,
and monitoring. In the following sections I’ll discuss each of these in turn.

1.2.1 Diagnosing problems

Diagnosing problems is concerned with identifying the underlying cause of a prob-
lem. This is perhaps the most common use of DMVs. It’s possible to query the DMVs to
diagnose many common problems, including your slowest queries, the most common
causes of waiting/blocking, unused indexes, files having the most I/O, and lowest
reuse of cached plans. Each of these areas of concern and more could be a starting
point to improving the performance of your SQL Server, whether you’re a DBA main-
taining a mature server environment or a developer working on a new project.

 It’s possible to view problem diagnosis at various levels, including from a server
perspective, a database perspective, or investigating a particular known trouble-
some query. Applying the correct filtering will allow you to use the DMVs at each
of these levels.

 Sometimes, identified problems aren’t real problems. For example, there may be
queries that run slowly but they run at a time when it doesn’t cause anyone any con-
cern. So although you could fix them, it would be more appropriate to focus your
problem-solving skills on issues that are deemed more important.

 No one ever says their queries are running too fast; instead, users typically report
how slow their queries seem to be running. Taking the slow-running query as an
example of a performance problem, you can use the DMVs to inspect the query’s
cached plan to determine how the query is accessing its data, how resources are being
used (for example, if indexes are being used or table scans), or if the statistics are out
of date, as well as to identify any missing indexes and to target the particular statement
or access path that’s causing the slowness. Later we’ll look at interpreting the cached
plan with a view to identifying performance bottlenecks.

 Knowing the areas of the query that are slow allows you to try other techniques
(for example, adding a new index) to see its effect on subsequent performance.
Applying these new features leads us into the area of performance tuning. We’ll inves-
tigate a great many ways of identifying problems in the rest of the book.
www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 The Dynamic Management Views gold mine
 One final point: sometimes if a query is too complicated and contains lots of func-
tionality, you should try breaking it down into smaller steps. Not only might this high-
light the problem area with finer granularity, but it might also solve it! Maybe the
optimizer has more choices available to it with simpler queries and generates a better
plan. You can see if this is the case by examining the relevant execution DMVs, as will
become clear in chapter 5.

1.2.2 Performance tuning

Performance tuning is concerned with applying suggested remedies to problems
identified by problem diagnosis with a view to improving performance. Examination
of the information shown by the DMVs should highlight areas where improvement can
be made, for example, applying a missing index, removing contention/blocking,
determining the degree of fragmentation, and so on. Again, the query’s cached plan
is a primary source of ideas for improvement.

 Measurement of any improvement is typically reflected in time or I/O counts and
can be made with traditional tools such as turning on STATISTICS IO or STATISTICS
TIME SQL commands or using a simple stopwatch. But for more comprehensive
results, you can look at the time recording provided by the DMVs. This includes, for
each individual SQL statement, time spent on the CPU (worker_time) and total time
(elapsed_time). A large difference between these two times indicates a high degree of
waiting/blocking may be occurring. Similarly, DMVs also record the amount of I/O
(reads/writes at both the physical and logical level) that can be used to measure the
effectiveness of a query, because less I/O typically reflects a faster query.

 Again, you can examine the cached plan after the improvements have been made
to determine if a more optimal access method has been chosen. Performance tuning
is an iterative process. This new cached plan and DMV metrics could be used for fur-
ther improvements, but again you need to ask if any remaining problem is worth solv-
ing, because you should always aim to fix what is deemed to be the most important
problems first.

 You need to be careful of the impact performance-based changes can have on the
maintainability of systems; often these two needs are diametrically opposed because
complexity is often increased. Rather than guess where optimization is needed, you
should undertake appropriate testing first to determine where it’s needed. As the
renowned computer scientist Donald Knuth said, “We should forget about small effi-
ciencies, say about 97% of the time: premature optimization is the root of all evil.”1 I’ll
discuss this in more detail in chapter 5.

1.2.3 Monitoring

A large group of DMVs (those starting with sys.dm_exec_) relates to what’s currently
executing on the server. By repeatedly querying the relevant DMVs, you get a view of

1 Donald Knuth, “Structured Programming with go to Statements,” ACM Journal Computing Surveys 6, no. 4
(December 1974): 268.
www.it-ebooks.info

http://www.it-ebooks.info/

11The problems DMVs can solve
the status of the server instance and also its history. Often this transient information is
lost, but it’s possible to store it for later analysis (for example, into temporary or semi-
permanent tables). An example of this is given in chapter 11, section 11.7, titled
“Who’s doing what and when?”

 Sometimes you have problems with the overnight batch process, reported as a tim-
eout or slow-running queries, and it would be nice to know what SQL is running dur-
ing the time of this problem, giving you a starting point for further analysis.

 Although you might know what stored procedure is currently running on your
server (from your overnight batch scheduler or sp_who2), do you know what specific
lines of SQL are executing? How are the SQL queries interacting? Is blocking occur-
ring? You can get this information by using DMVs combined with a simple monitoring
script. I’ve used such a script often to examine problems that occur during an over-
night batch run.

NOTE This example uses routines I’ve created and fully documented in the
web links given in the following code sample (so you see, not only is code
reuse good but article reuse too). Rather than talk in detail about the con-
tents of these two utilities, I’ll talk about them as black boxes (if you do want
to find out more about them, look here for the routine named dba_Block-
Tracer: mng.bz/V5E3; and look here for the routine named dba_WhatSQLIs-
Executing: mng.bz/uVs3). The code for both of these stored procedures is
also available on the webpage for this book on the Manning website. This way
you’ll be able to adapt this simple monitor pattern and possibly replace the
two utilities with your own favorite utilities. Later in this chapter I’ll go
through the code that forms the basis of one of the stored procedures
(dba_WhatSQLIsExecuting).

The following listing shows the code for a simple monitor.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

WAITFOR TIME '19:00:00'
GO

PRINT GETDATE()
EXEC master.dbo.dba_BlockTracer

IF @@ROWCOUNT > 0
BEGIN
 SELECT GETDATE() AS TIME
 EXEC master.dbo.dba_WhatSQLIsExecuting
END

WAITFOR DELAY '00:00:15'
GO 500

This code snippet waits until a specified time (7 p.m. in this example B) and then
prints the date/time and runs a routine named dbo.dba_BlockTracer C. If anything

Listing 1.1 A simple monitor

Wait until 7 p.m.B

Is anything blocked?C

If blocking
occurring...D Show SQL

running
E

Wait 15
seconds

F
Repeat
(500 times)

G

www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 The Dynamic Management Views gold mine
is blocked, dbo.dba_BlockTracer displays information about both the blockers and
the blocked items. Additionally, if anything is blocked (and output produced) the
variable @@ROWCOUNT will have a nonzero value D. This causes it to output
the date and time and list all the SQL that’s running E (including the batch/stored
procedure and the individual SQL statement within it that’s running). The utility
then waits a specified time (15 seconds in this example F) and repeats. All this is
repeated (except waiting until 7 p.m.) a number of times, as specified by the last GO
statement (500 in this example G).

 The routines show not only what’s being blocked but also details of what SQL is
running when any blocking occurs. When a SQL query runs, SQL Server assigns it a
unique identifier, named the session id or the SQL Server process id (spid). You’ll notice
that the output in the various grids contain spids that can be used to link the output
from the two utilities together. An example of the type of output for this query is given
in figure 1.1.

 The first two grids show the root-blocking spid (this is the cause of the blocking)
and the blocked spid. This is followed by a grid showing the date and time the block-
ing occurred. Finally, details of everything that’s currently running are shown; these
include the individual line of SQL that’s running together with the parent query
(stored procedure or batch).

 A special mention should be made about the humble GO command. The GO com-
mand will execute the batch of SQL statements that occurs after the last GO state-
ments. If GO is followed by a number, then it will execute that number of times. This is
useful in many circumstances; for example, after an INSERT statement if you put GO
50, the insert will occur 50 times.

 This GO number pattern can be extended to provide a simple concurrency/block-
ing/deadlock test harness. If you enter a similar batch of SQL statements into two or
more distinct windows within SQL Server Management Studio (SSMS), and the state-
ments are followed with a GO 5000 and the SQL in all windows run at the same time,
you can discover the effect of repeatedly running the SQL at the same time.

Figure 1.1 Output showing if anything is blocked and what individual SQL queries are running
www.it-ebooks.info

http://www.it-ebooks.info/

13DMV examples
It’s possible to determine what’s running irrespective of any blocking by using an even
simpler monitoring query, given in the following snippet:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

WAITFOR TIME '19:00:00'
GO

SELECT GETDATE() AS TIME
EXEC master.dbo.dba_WhatSQLIsExecuting

WAITFOR DELAY '00:00:15'
GO 500

The query waits for a given time (7 p.m. B) and then displays the date and time
together with details of what SQL queries are running C. It then waits for a specified
period (15 seconds D) and repeats E (but doesn’t wait until 7 p.m. again!).

 Queries often compete for resources, for example, exclusive access to a given set of
rows in a table. This competition causes related queries to wait until the resource is
free. This waiting affects performance. You can query the DMVs to determine what
queries are waiting (being blocked) the most and aim to improve them. We’ll identify
the most-blocked queries later, in chapter 4, section 4.5, “Queries that spend a long
time being blocked.”

 You can use the simple monitor utility discussed previously to determine why these
identified queries are being blocked; the DMVs will tell you what is blocked, but they
don’t identify what’s blocking them. The monitoring utility can do this. The monitor
utility can be a powerful tool in identifying why and how the most-blocked queries are
being blocked.

 Having looked at what kind of problems DMVs can help solve, let’s now dive into
some simple but useful DMV example code that can be helpful in solving real-life pro-
duction problems.

1.3 DMV examples
The purpose of this section is to illustrate how easy it is to retrieve some valuable infor-
mation from SQL Server by querying the DMVs.

 Don’t worry if you don’t understand all the details given in these queries immedi-
ately. I won’t explain in detail here how the query performs its magic; after all, this is
meant to be a sample of what DMVs are capable of. I will, however, explain these que-
ries fully later in the book.

NOTE All the examples are prefixed with a statement concerning isolation
level. This determines how the subsequent SQL statements in the batch inter-
act with other running SQL statements. The statement sets the isolation level
to read uncommitted. This ensures you can read data without waiting for
locks to be released or acquiring locks yourself, resulting in the query run-
ning more quickly with minimal impact on other running SQL queries. The
statement used is
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

Wait until
7 p.m.

B

Show running
SQL

C
Wait 15
seconds

D
Repeat
(500 times)

E

www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 The Dynamic Management Views gold mine
It’s often the case that you have several different databases running on the same
server. A consequence of this is that no matter how optimal your individual database
may be, another database on the server, running suboptimally, may affect the server’s
resources, and this may impact the performance of your database. Because of this, we
offer scripts that inspect the DMVs across all the databases on the server. It’s possible
to target the queries to a specific database on the server instance by supplying a rele-
vant WHERE clause (many other filters can be applied).

 Bear in mind the purpose of these samples is to illustrate quickly how much useful
information is freely and easily available within the DMVs. Richer versions of these rou-
tines will be provided later in the book.

1.3.1 Find your slowest queries

Does anyone ever complain, “My queries are running too fast!”? Almost without
exception, the opposite is the case, because queries are often reported as running too
slowly. If you run the SQL query given in the following listing, you’ll identify the 20
slowest queries on your server.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 CAST(qs.total_elapsed_time / 1000000.0 AS DECIMAL(28, 2))
 AS [Total Elapsed Duration (s)]
 , qs.execution_count
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE
 qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY total_elapsed_time DESC

The DMV sys.dm_exec_query_stats contains details of various metrics that relate to an
individual SQL statement (within a batch). These metrics include query duration B
(total_elapsed_time) and the number of times the query has executed (execution_
count). Additionally, it records details of the offsets of the individual query within the
parent query. To get details of the parent query and the individual query C, the offset
parameters are passed to the DMF sys.dm_exec_sql_text. The CROSS APPLY statement
can be thought of as a join to a table function that in this case takes a parameter. Here,
the first CROSS APPLY takes a parameter (sql_handle) and retrieves the text of the
query. The second CROSS APPLY takes another parameter (plan_handle) and retrieves

Listing 1.2 Find your slowest queries

Get query
duration

B

Extract SQL
statementC

Sort by slowest
queries

D

www.it-ebooks.info

http://www.it-ebooks.info/

15DMV examples
the cached plan associated with the query The cached plan is a primary resource for
discovering why the query is running slowly, and often it will give an insight into how
the query can be improved. The query’s cached plan is output as XML. The results are
sorted by the total_elapsed_time D. To limit the amount of output, only the slowest 20
queries are reported. Running the slowest-queries query on my server gives the results
shown in figure 1.2.

 The results show the cumulative impact of individual queries, within a batch or
stored procedure. Knowing the slowest queries will allow you to make targeted
improvements, confident in the knowledge that any improvement to these queries will
have the biggest impact on performance improvement.

 It’s possible to determine which queries are the slowest over a given time period by
creating a snapshot of the relevant DMV data at the start and end of the time period
and calculating the delta. An example of this is shown later, in the chapter concerning
common patterns, in section 2.10, “Calculating DMV changes.”

 The NULL values in the DatabaseName column mean the query was run either ad
hoc or using prepared SQL (that is, not as a stored procedure). This in itself can be
interesting because it indicates areas where stored procedures aren’t being reused
and possible areas of security concern. Later, an improved version of this query will
get the underlying database name for the ad hoc or prepared SQL queries from
another DMV source.

 Slow queries can be a result of having incorrect or missing indexes; our next exam-
ple will show how to discover these missing indexes.

1.3.2 Find those missing indexes

Indexes are a primary means of improving SQL performance. But for various rea-
sons, for example, inexperienced developers or changing systems, useful indexes
may not always have been created. Running the SQL query given in the next listing
will identify the top 20 indexes, ordered by impact (Total Cost), that are missing
from your system.

Figure 1.2 Identify the slowest SQL queries on your server, sorted by duration.
www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 The Dynamic Management Views gold mine
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 ROUND(s.avg_total_user_cost * s.avg_user_impact *
 (s.user_seeks + s.user_scans),0) AS [Total Cost]
 , s.avg_user_impact
 , d.statement AS TableName
 , d.equality_columns
 , d.inequality_columns
 , d.included_columns
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s
 ON s.group_handle = g.index_group_handle
INNER JOIN sys.dm_db_missing_index_details d
 ON d.index_handle = g.index_handle
ORDER BY [Total Cost] DESC

The DMV sys.dm_db_missing_index_group_stats contains metrics for missing indexes,
including how it would have been used (seek or scan), if it would have been used by
an application or system (for example, DBCC), and various measures of cost saving by
using this missing index. The DMV sys.dm_db_missing_index_details contains textual
details of the missing index (what database/schema/table it applies to, what columns
the index would include). These two DMVs (metrics and names) are linked together
via another DMV, sys.dm_db_missing_index_groups, which returns information about
missing indexes in a specific missing index group.

 You should note how the Total Cost field of the missing index is calculated B.
Total Cost should reflect the number of times the index would have been accessed (as
a seek or scan), together with the impact of the index on its queries. The results are
sorted by the calculated Total Cost C.

 Applying these indexes to your systems may have a significant impact on the per-
formance of your queries.

 Running the missing indexes query on my server displays the results shown in
figure 1.3.

Listing 1.3 Find those missing indexes

Calculate costB

Sort by costC

Figure 1.3 Output from the missing indexes SQL
www.it-ebooks.info

http://www.it-ebooks.info/

17DMV examples
The results show the most important missing indexes as determined by this particular
method of calculating their Total Cost. You can see the database/schema/table that
the missing index should be applied to. The other output columns relate to how the
columns that would form the missing index would have been used by various queries,
such as if the columns have been used in equality or inequality clauses on the SQL
WHERE statement. The last column lists any additional columns the missing index
would like included at the leaf level for quicker access.

 Given the importance of indexes to query performance, I’ll discuss many aspects
of index usage throughout this book, and especially in chapter 3, “Index DMVs.”

1.3.3 Identify what SQL statements are running now

Often you may know that a particular batch of SQL (or stored procedure) is running,
but do you know how far it has gotten within the batch of SQL? This is particularly
troublesome when the query seems to be running slowly or you want to ensure a par-
ticular point within the batch has safely passed.

 Inspecting the relevant DMVs will allow you to see the individual SQL statements
within a batch that are currently executing on your server.

 To identify the SQL statements currently running now on your SQL Server, run the
query given in listing 1.4. If a stored procedure or batch of SQL is running, the col-
umn Parent Query will contain the text of the stored procedure or batch, and the
column Individual Query will contain the current SQL statement within the batch
that’s being executed (this can be used to monitor progress of a batch of SQL). Note that
if the batch contains only a single SQL statement, then this value is reported in both
the Individual Query and Parent Query columns. Looking at the WHERE clause, you’ll
see that we ignore any system processes (having a spid of 50 or less), and we also
ignore this actual script.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 er.session_Id AS [Spid]
 , sp.ecid
 , DB_NAME(sp.dbid) AS [Database]
 , sp.nt_username
 , er.status
 , er.wait_type
 , SUBSTRING (qt.text, (er.statement_start_offset/2) + 1,
 ((CASE WHEN er.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE er.statement_end_offset
 END - er.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , sp.program_name
 , sp.Hostname
 , sp.nt_domain
 , er.start_time

Listing 1.4 Identify what SQL is running now

Extract SQL
statement

B

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 The Dynamic Management Views gold mine
FROM sys.dm_exec_requests er
INNER JOIN sys.sysprocesses sp ON er.session_id = sp.spid
CROSS APPLY sys.dm_exec_sql_text(er.sql_handle)as qt
WHERE session_Id > 50
AND session_Id NOT IN (@@SPID)
ORDER BY session_Id, ecid

The DMV sys.dm_exec_requests contains details of each request, the SQL query B,
executing on SQL Server. This DMV is joined to the catalog view sys.sysprocesses C
based on its session id. Catalog views are similar to DMVs but contain static data; I will
talk more about them shortly, in the section “DMV companions.” The catalog view
sys.sysprocesses contains information about the environment from which the request
originated and includes such details as user name and the name of the host it’s run-
ning from. Combining the DMV and catalog view gives you a great deal of useful infor-
mation about the queries that are currently running.

 As discussed previously, in the section “Find your slowest queries,” we get the run-
ning query’s SQL text by passing the request’s sql_handle to the DMF sys.dm_exec_
sql_text and apply string manipulation to that SQL text to obtain the exact SQL state-
ment that’s currently running. Running the “what SQL is running now” query on my
server gives the results shown in figure 1.4.

The output shows the spid (process identifier), the ecid (this is similar to a thread
within the same spid and is useful for identifying queries running in parallel), the
database name, the user running the SQL, the status (whether the SQL is running or
waiting), the wait status (why it’s waiting), the hostname, the domain name, and the
start time (useful for determining how long the batch has been running). I’ll explain
these columns and their relevance in detail later in the book, in chapter 5, section 5.9,
“Current running queries.”

 You can see the route a SQL query takes in answering a query by examining the
query’s cached plan; this can provide several clues as to why a query is performing as it
is. Next we’ll look at how these plans can be found quickly.

1.3.4 Quickly find a cached plan

The cached plan (execution plan) is a great tool for determining why something is
happening, such as why a query is running slowly or if an index is being used. When a
SQL query is run, it’s first analyzed to determine what features, for example, indexes,
should be used to satisfy the query. Caching this access plan enables other similar que-
ries (with different parameter values) to save time by reusing this plan.

 It’s possible to obtain the estimated or actual execution plan for a batch of SQL by
clicking the relevant icon in SQL Server Management Studio. Typically the estimated

Join request to
sysprocessesC

Figure 1.4 Output identifies which SQL queries are currently running on the server.
www.it-ebooks.info

http://www.it-ebooks.info/

19DMV examples
plan differs from the actual plan in that the former isn’t actually run. The latter will
provide details of actual row counts as opposed to estimated row counts (the discrep-
ancy between the two row counts can be useful in determining if the statistics need to
be updated).

 But there are problems with this approach. It may not be viable to run the query
because it may be difficult to obtain (for example, the query takes too long to execute;
after all, that’s often the reason we’re looking at it!).

 Luckily, if the query has been executed at least once already, it should exist as a
cached plan, so we just need the relevant SQL to retrieve it using the DMVs. If you run
the SQL query given in listing 1.5, you can retrieve any existing cached plans that con-
tain the text given by the WHERE statement. In this case, the query will retrieve any
cached plans that contain the text ‘CREATE PROCEDURE’ B, of which there should
be many. Note that you’ll need to enter some text that uniquely identifies your SQL,
for example, the stored procedure name, to retrieve the specific cached plans you’d
like to see.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 st.text AS [SQL]
 , cp.cacheobjtype
 , cp.objtype
 , COALESCE(DB_NAME(st.dbid),
 DB_NAME(CAST(pa.value AS INT))+'*',
 'Resource') AS [DatabaseName]
 , cp.usecounts AS [Plan usage]
 , qp.query_plan
FROM sys.dm_exec_cached_plans cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
OUTER APPLY sys.dm_exec_plan_attributes(cp.plan_handle) pa
WHERE pa.attribute = 'dbid'
AND st.text LIKE '%CREATE PROCEDURE%'

Running the query from listing 1.5 on my server gives the results shown in figure 1.5.

Listing 1.5 Quickly find a cached plan

Join cached plan and
SQL text DMVs

Text to search
plan for

B

Figure 1.5 Output showing searched-for cached plans
www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 1 The Dynamic Management Views gold mine
When you identify the relevant query you want the cached plan for (the previous
query is quite generic, looking for plans that contain the text ‘CREATE PROCEDURE’),
clicking the relevant row under the column named query_plan will display the query
plan. How it does this differs depending on whether you’re using SQL Server version
2005 or 2008. If you’re using version 2005, clicking the column will open a new win-
dow showing the cached plan in XML format; if you save this XML with an extension of
.sqlplan and then open it separately (double-click it in Windows Explorer), it will
open showing a full graphical version of the plan in SSMS. If you’re using SQL Server
2008, clicking the query_plan column will open the cached plan as a full graphical
version; this is shown in figure 1.6.

 As a side note, if you’re using SQL Server 2008, when you see the graphical version
of the cached plan, if there are any missing indexes, they’ll be given at the top of each
section in green, with text starting “Missing Index” (again see figure 1.6). If you right-
click the diagram, you can select Missing Index Details. Clicking this will open a new
window with a definition of the missing index ready to add; you just need to add an
appropriate index name. An example of this is shown here.

/*
Missing Index Details from ExecutionPlan1.sqlplan
The Query Processor estimates that implementing the following index could
improve the query cost by 67.4296%.
*/

Listing 1.6 Missing index details

Figure 1.6 Missing indexes details included with a 2008 cached plan
www.it-ebooks.info

http://www.it-ebooks.info/

21DMV examples
/*
USE [YourDatabaseName]
GO
CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [dbo].[PNLError] ([COB])
INCLUDE ([RequestId],[DealCode])
GO
*/

If I search for the cached plan of a routine that contains a reference to something
named SwapsDiaryFile, I can quickly get its cached plan, part of which is shown in fig-
ure 1.7.

 Looking at figure 1.7, you can see that each statement within a batch or stored pro-
cedure has a query cost associated with it (here you’ll notice that the first two queries
have a 0% cost, followed by another query that has a 100% cost). Once you find the
section of code that has a high query cost, you should then inspect the components
(shown as icons) that make up that cost. They too are numbered (in our example,
Query 3 is divided into three parts, with cost values of 0%, 62%, and 38%. You can

Figure 1.7 Cached plan showing cost by statement and within each statement
www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 1 The Dynamic Management Views gold mine
thus identify the section within the batch that should be targeted for improvement; in
our case it’s the operation that cost 62%.

 Before DMVs can be used, you need to ensure that the appropriate permissions
have been assigned and that you’re aware of the accumulative nature of DMVs; we dis-
cuss these next.

1.4 Preparing to use DMVs
A great many exciting DMV insights into our SQL queries await us. But before you can
dive into using DMVs, you need to ensure that you’re aware of certain prerequisites.
The first of these relates to permissions to the DMVs/DMFs, and the second relates to
circumstances under which you might want to clear the DMVs.

1.4.1 Permissions

There are two levels of DMV and DMF usage, namely, server-scoped and database-scoped.
Server-scoped requires VIEW SERVER STATE permission on the server, and database-
scoped requires VIEW DATABASE STATE permission on the database. Granting VIEW
SERVER STATE permission infers VIEW DATABASE STATE permission on all the data-
bases on the server.

 Note that if a user has been granted VIEW SERVER STATE permission but has been
denied VIEW DATABASE STATE permission, the user can see server-level information
but not database-level information for the denied database.

 Rather than assign these permissions to existing groups or users, it’s often prefera-
ble to create a specific login (named, for example, DMV_Viewer) and assign appropri-
ate permissions to that login.

 If you’re undertaking testing, you may want to be able to clear various DMVs; to do
this you’ll need ALTER SERVER STATE permission on the server. Details of the various
methods used to clear the DMVs are given in the following section.

1.4.2 Clearing DMVs

Often when you want to find the effect of a given query or system action, you’ll want to
clear the relevant DMVs to give you a clean starting point from which to make mea-
surements. Various DMVs can be cleared in different ways.

 Before we discuss how the DMVs can be cleared, it’s worth noting that another
approach exists to allow you to determine the effect of a given query or system action.
DMV data is cumulative, so to determine the effect of a query, you can to take a snap-
shot of the relevant DMVs, run the query under investigation, and then take a second

Clearing DMVs
Please note that you should clear DMVs on production machines only after careful
consideration, because this will result in queries taking longer to run because they
need to be compiled again.
www.it-ebooks.info

http://www.it-ebooks.info/

23DMV companions
snapshot. You can determine the effect of the query by comparing the two snapshots
and calculating the differences (delta). Several examples of this approach are given
subsequent chapters; for example, see section 6.8 titled “Effect of running SQL que-
ries on the performance counters.”

 Another possible way of using the DMVs without clearing them is to retrieve SQL
query data from a given time period (best if it has run recently), because several DMVs
record when the query was last run.

 The simplest way to clear the DMVs is to stop and restart the SQL Server service
or alternatively reboot the SQL Server box. While this may be the easiest method,
it’s probably also the most drastic in terms of impact on users, so you should use it
with caution.

 Alternatively, it’s possible to clear some specific DMVs, in particular, those that
relate to cached plans and query performance. These DMVs start with a signature of
sys.dm_exec_.

 To clear the DMVs that relate to cached plans, at the server level use the following
command: DBCC FREEPROCCACHE. This clears all the cached plans on all databases
on the server. In SQL Server 2008 this command can also be supplied with a parame-
ter to remove a specific cached plan from the pool of cached plans.

 The parameter supplied to DBCC FREEPROCCACHE, on SQL Server 2008 and
higher, is either a plan_handle, sql_handle, or pool_name. The plan_handle and
sql_handle are 64-bit identifiers of a query plan and batch of SQL statements, respec-
tively, that are found in various DMVs. The pool_name is the name of a Resource
Governor workload group within a resource pool.

 You can also clear the cached plans for a specific database only, using the follow-
ing commands:

DECLARE @DB_ID INT
SET @DB_ID = DB_ID('NameOfDatabaseToClear') -- Change this to your DB
DBCC FLUSHPROCINDB(@DB_ID)

When SQL Server is closed down or the SQL Server service is stopped, the DMV data is
lost. There are methods of creating a more permanent version of this transient infor-
mation for later analysis. An example of this is given in section 11.7, “Who is doing
what, and when?”

NOTE It should be noted that not all queries are cached; these include DBCC
commands and index reorganizations. In addition, queries can be removed
from the cache when there are memory pressures.

The power of DMVs can be enhanced considerably if you link to various other database
objects including indexes, statistics, and cataloged views. These are discussed next.

1.5 DMV companions
Although this book is primarily concerned with the usage of DMVs, to get the most out
of the DMVs it’s necessary to know more about some peripheral but related areas,
www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 1 The Dynamic Management Views gold mine
including catalog views, cached plans, indexes, and database statistics. Knowing about
these other areas should give you a better understanding of what the DMVs provide
and what you can do to improve performance.

1.5.1 Catalog views

DMVs and catalog views together provide a more complete view of your internal SQL
Server data, where DMVs contain dynamic data and catalog views contain static data.
To take full advantage of the various DMVs, you’ll need to join the DMVs with various
catalog views to produce more meaningful output. For example, when you’re process-
ing DMVs that relate to indexes, you’ll often join with the catalog view sys.indexes,
which contains information about indexes, such as index type or its uniqueness, cre-
ated on tables in the current database.

 Earlier versions of SQL Server held this internal metadata in system tables; these
tables are still present in later versions. But it’s not recommended to query these sys-
tem tables directly, because future internal changes that Microsoft makes may break
your code. These system tables have been replaced by the following:

■ Catalog views—Tables that describe objects, for example, sys.columns
■ Compatibility views—Backward compatible with older tables, for example, sys-

columns
Where possible, you should use catalog views, which like DMVs are part of the sys
schema. Catalog views contain both server- and database-level objects and tend to be
more user friendly (for example, better-named columns) than the older system tables.

1.5.2 Cached plans

When a query is run, a cached plan for it is created. This details what tables are
accessed, what indexes are used, what types of joins are performed, and so on. Storing
this information in a cached plan allows subsequent similar queries (where the param-
eters differ) to reuse this plan, saving time.

 When using the DMVs that relate to SQL queries, you’ll often look at the query’s
cached plan to get a greater insight into how the query is fulfilling its requirements
(for example, getting or updating data). This will allow you to target many problems
and get ideas of any possible improvements.

 Examining a query’s cached plan can give you a great deal of insight into why a
query is running slowly. Maybe the query isn’t using an index. Maybe the query is

Understanding the cached plan
In many ways, a cached plan is analogous to the well-trodden tourist excursion
many of us have undertaken when we take a vacation. The experienced tour guide
knows the most efficient routes to use to fulfill the expectations of the group of
tourists. Similarly, the SQL Server optimizer knows the most efficient routes to
access different tables for its SQL queries.
www.it-ebooks.info

http://www.it-ebooks.info/

25DMV companions
using the wrong index. Maybe the data’s statistics are out of date. All this information
and more can be gleaned by examining the cached plan.

 The output from your sample SQL snippets will often contain the cached plan asso-
ciated with the SQL; understanding it will give insight into how a query currently
works and how you might want to change it to improve its performance, for example,
adding a missing index or updating any stale statistics. You’ll hear more about reading
cached plans later.

 Luckily, you can use DMVs to access the cached plans, allowing you to investigate
further why the query is having problems and potentially provide solutions. You saw
earlier, in the section titled “Quickly find a cached plan,” how you can use a cached
plan to target the area costing the most in terms of performance.

1.5.3 Indexes

Perhaps the main tool for improving the performance of your queries is the index.
Indexes are used for fast retrieval of data (imagine looking for something specific in
this book without the index at the back!). Additionally, indexes are also useful for sort-
ing and providing unique constraints.

 The DMVs record many index-related details, including how often an index is
used, how it’s used (as part of a scan, as a lookup, by the application, or by system rou-
tines), whether it isn’t used at all, any concurrency problems accessing the indexes,
and details of any missing indexes.

 Knowing about how the different types of indexes are used will give you a greater
pool of knowledge from which you can propose solutions. In essence, for retrieving a
small number of relatively unique rows you want an index that can quickly identify the
subset of rows. These are typically nonclustered indexes. For longer reporting-like
queries, you typically want a range of rows that are hopefully physically next to each
other (so you can get them with fewer reads). This typically means a clustered index.
We’ll discuss indexes in more detail in chapter 3.

1.5.4 Statistics

When a query is run, the optimizer inspects the relevant tables, row counts, con-
straints, indexes, and data statistics to determine a cost-effective way of fulfilling the
query. Statistics describe the range and density of the data values for a given column.
These are used to help determine the optimal path to the data. This information is
used to create a plan that’s cached for reuse. In essence, statistics can greatly influence
how the underlying data is queried.

 When the data in the table changes, the statistics may become stale, and this
may result in a less-efficient plan for the available data. To get around this, the sta-
tistics are typically updated automatically, and any necessary plans are recompiled
and recached.

 For tables with more than 500 rows, a 20% change in the underlying data is
required before the statistics are automatically updated. For large tables, containing,
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 1 The Dynamic Management Views gold mine
for example, 10 million rows, 2 million changes would be necessary before the statis-
tics are recalculated automatically. If you were to add 100,000 rows to this table on a
daily basis, it would require 20 days before the statistics are updated; until that time
you may be working with stale statistics and a suboptimal plan. Because of this, it’s
often advisable to update the statistics more regularly using a scheduled job. I’ve expe-
rienced many occasions when queries have been running slowly, but they run almost
instantaneously when the table’s statistics are updated.

 In many ways, especially for larger tables on mature systems, I feel statistics are a
critical element in the efficiency of database systems. When you run a query, the opti-
mizer looks at the columns you join on, together with the columns involved with your
WHERE clause. It looks at the column data’s statistics to determine the probabilities
involved in retrieving data based on those column values. It then uses these statistical
probabilities to determine whether an index should be used and how it should be
used (for example, seek, lookup, or scan). As you can see, having up-to-date statistics
is important. Later in the book (chapter 3, section 3.10, “Your statistics”), I’ll show you
a SQL script to determine whether your statistics need to be refreshed.

1.6 Working with DMVs
You can tackle problems from several angles, using a variety of tools. The point to note
is some tools are more appropriate than others for given tasks. For example, you
could use a screwdriver or a blunt knife to undo a screw; both could probably do the
job, but you’ll find one is easier than the other. Similarly, if you want to determine
which queries are running slowly, you could use SQL Server Profiler, but a quicker,
smarter way would be to use DMVs.

 This isn’t to say that DMVs are better than other tools. The point I want to make is
that sometimes, depending on the problem you’re trying to investigate, using DMVs
may provide a quicker and easier method of investigation. The different tools should
be seen as complementary rather than mutually exclusive.

 Part of the problem of using DMVs is that they tend to be little known and untried
compared with the more established tools. Hopefully the code samples given in this
book will help form the basis of an additional approach to problem solving.

1.6.1 In context with other tools

Developers and DBAs who lack knowledge of DMVs typically turn to the traditional
problem-solving database tools, including tracing, cached plan inspection, Database
Tuning Advisor, and Performance Monitor. These are discussed briefly in comparison
with using DMVs.

SQL SERVER PROFILER

SQL Server comes with a SQL Server Profiler utility that allows you to record what SQL
is running on your SQL Server boxes. It’s possible to record a wide range of informa-
tion (for example, number of reads/writes or query duration) and filter the range of
data you want to record (for example, for a given database or spid).
www.it-ebooks.info

http://www.it-ebooks.info/

27Working with DMVs
SQL Server Profiler is a well-known and much-used utility, typically allowing you to
target the cause of a problem. But it does use system resources, and because of this
running it on production systems is usually not recommended.

 There are various reasons for using SQL Server Profiler, including discovering what
SQL queries are being run, determining why a query is taking so long to run, and cre-
ating a suite of SQL that can be replayed later for regression testing. You’ve already
seen in the DMV examples section how you can discover both what is running and the
slowest queries easily and simply by using the DMVs. With this in mind, it may be ques-
tionable whether you need to use SQL Server Profiler to capture information that’s
already caught by the DMVs (remember that you can get the delta between two DMV
snapshots to determine the effect of a given batch of SQL queries).

 Looking further at using SQL Server Profiler to discover why a batch of SQL is run-
ning slowly, you have the additional task of summing the results of the queries, some
of which may run quickly but are run often (so their accumulative effect is large). This
problem is compounded by the fact that the same SQL may be called many times but
with different parameters. Creating a utility to sum these queries can be time consum-
ing. This summation is done automatically with the DMVs.

 In chapter 11, section 11.12, I’ll present a simple and lightweight DMV alternative
to SQL Server Profiler.

DATABASE TUNING ADVISOR

The Database Tuning Advisor (DTA) is a great tool for evaluating your index require-
ments. It takes a given batch of SQL statements as its input (for example, taken from a
SQL Server Profiler trace), and based on this input it determines the optimal set of
indexes to fulfill those queries.

 The SQL statements used as input into the DTA should be representative of the
input you typically process. This should include any special processing, such as month-
end or quarterly processing. The DTA can also be used to tune a given query precisely
to your processing needs.

 The DTA amalgamates the sum total effect of the SQL batch and determines
whether the indexes are worthwhile. In essence, it evaluates whether the cost of hav-
ing a given index for retrieval is better than the drawbacks of having to update the
index when data modifications are made.

 Where possible, you should correlate the indexes the DTA would like to add or
remove with those proposed by the DMVs, for example, missing indexes or unused
or high-maintenance indexes. This shows how the different tools can be used to
complement each other rather than being mutually exclusive.

PERFORMANCE MONITOR
Performance Monitor is a Windows tool that can be used to measure SQL Server per-
formance via various counters. These counters relate to objects such as processors,
memory, cache, and threads. Each object in turn has various counters associated with
it to measure such things as usage, delays, and queue lengths. These counters can be
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 1 The Dynamic Management Views gold mine
useful in determining whether a resource bottleneck exists and where further investi-
gation should be targeted.

 In SQL Server 2008 it’s possible to merge the Performance Monitor trace into the
SQL Server Profiler trace, enabling you to discover what’s happening in the wider
world of Windows when given queries are run.

 These counters measure various components that run on Windows. A subset of
them that relates to SQL Server in particular can be accessed via the DMV sys.dm_os_
performance_counters; I’ll discuss these in chapter 6 (“Operating system DMVs”). If
you query this DMV at regular intervals and store the results, you can use this informa-
tion in diagnosing various hardware and software problems.

CACHED PLAN INSPECTION
We’ve already discussed how you can get the cached plan for a given query and also
its importance in relation to DMVs. Having a cached plan is a great starting point for
diagnosing problems, because it can provide more granular details of how the query
is executed.

 Each SQL statement within a batch is assigned a percentage cost in relation to the
whole of the batch. This allows you to quickly target the query that’s taking most of
the query cost. For each query, the cached plan contains details of how that individual
query is executed, for example, what indexes are used and the index access method.
Again, a percentage is applied to each component. This allows you to quickly discover
the troublesome area within a query that’s the bottleneck.

 In addition to investigating the area identified as being the mostly costly, you can
also check the cached plan for indicators of potential performance problems. These
indicators include table scans, missing indexes, columns without statistics, implicit
data type conversions, unnecessary sorting, and unnecessary complexity. We’ll provide
a SQL query later in the book that will allow you to search for these items that may be
the cause of poor performance.

DMVs are typically easier to extract results from, when compared with other more
traditional methods. But these different methods aren’t mutually exclusive, and where
possible, you should combine the different methods to give greater support and
insight into the problem being investigated.

1.6.2 Self-healing database

Typically we get notified of a problem via an irate user, for example, “My query’s tak-
ing too long; what’s happening?” Although identifying and solving the problem using
a reactive approach fixes the immediate difficulty, a better, more stress-free and pro-
fessional approach would be preemptive, to identify and prevent problems before
they become noticeable.

 A preemptive approach involves monitoring the state of your databases and auto-
matically fixing any potential problems before they have a noticeable effect. Ulti-
mately, if you can automatically fix enough of these potential problems before they
occur, you’ll have a self-healing database.
www.it-ebooks.info

http://www.it-ebooks.info/

29Working with DMVs
 If you adopt a preemptive approach to problems, with a view to fixing potential
problems before they become painfully apparent, you can implement a suite of SQL
Server jobs that run periodically, which can not only report potential problems but
also attempt to fix them. With the spread and growth of SQL Server within the enter-
prise via tools such as SharePoint and Customer Relationship Management (CRM) sys-
tems, as well as various ad hoc developments (that have typically been outside the
realms of database developers or DBAs), there should be an increasing need for self-
healing databases and a corresponding increase in knowledge of DMVs.

 If you take as your goal the premise that you want your queries to run as quickly as
possible, then you should be able to identify and fix issues that counteract this aim.
Such issues include missing indexes, stale statistics, index fragmentation, and inconsis-
tent data types.

 Later in this book I’ll provide SQL queries that run as regular SQL Server jobs that
will at least attempt to automate the fixing of these issues with a view toward creating
a self-healing database. These queries will report on the self-healing changes and, if
necessary, implement the self-healing changes. These queries will be provided in
chapter 10, “The self-healing database.”

1.6.3 Reporting and transactional databases

Using DMVs you could present a case for separating out the reporting aspects of the
database from the transactional aspects. This is important because they have different
uses and they result in different optimal database structures. Having them together
often produces conflicts.

 A reporting database is one primarily concerned with retrieving data. Some aggre-
gation may have already been done or else is done dynamically as it’s required. The
emphasis is on reading and processing lots of data, often resulting in a few, but long-
running, queries. To optimize for this, we tend to have lots of indexes (and associated
statistics), with a high degree of page fullness (so we can access more rows per read).
Typically, data doesn’t have to appear in the reporting database immediately. Often
we’re reporting on how yesterday’s data compares with previous data, so potentially it
can be up to 24 hours late. Additionally, reporting databases have more data (indexes
are often very large), resulting in greater storage and longer backups and restores.

 By comparison, a transactional database is one where the queries typically retrieve
and update a small number of rows and run relatively quickly. To optimize for this, we
tend to have few indexes, with a medium degree of page fullness (so we can insert
data in the correct place without causing too much fragmentation).

 Now that I’ve outlined the differing needs of both the reporting and transactional
databases, I think you can see how their needs compete and interfere with each
other’s optimal design. If your database has both reporting and transactional require-
ments, then when you update a row, if there are additional indexes, these too will
need to be updated, resulting in a transactional query that takes longer to run, lead-
ing to a greater risk of blocking, timeout (in .NET clients, for example), and deadlock.
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 1 The Dynamic Management Views gold mine
Additionally, the transactional query, although it would run quickly, might be blocked
from running by a long-running reporting query.

 You can look at the DMVs to give you information about the split of reporting ver-
sus transactional requirements. This data includes the following:

■ Number of reads versus the number of writes per database or table
■ Number of missing indexes
■ Number and duration of long-running queries
■ Number and duration of blocked queries
■ Space taken (also reflects time for backup/restore)

Usually, the missing indexes need to be treated with caution. Although adding
indexes is great for data selection (reporting database), it may be detrimental to
updates (transactional database). If the databases are separated, you can easily imple-
ment these extra indexes on the reporting database.

 With a reporting database, you can create the indexes such that there’s no redun-
dant space on the pages, ensuring that you optimize data retrieval per database read.
Additionally, you could mark the database (or specific file groups) as read-only, elimi-
nating the need for locking and providing a further increase in performance.

 Using this data can help you determine whether separating out at least some of the
tables into another database might lead to a better database strategy (for example,
tables that require lots of I/O could be placed on different drives, allowing improved
concurrent access). There are many ways of separating out the data, including replica-
tion and mirroring.

1.7 Summary
This chapter’s short introduction to Dynamic Management Views has illustrated the
range and depth of information that’s available quickly, easily, and freely, just for
the asking.

 You’ve discovered what DMVs are and the type of problems they can solve. DMVs
are primarily used for diagnosing problems and also assist in the proposal of potential
solutions to these problems.

 Various example SQL snippets have been provided and discussed. These should
prove immediately useful in determining your slowest SQL queries, identifying your
mostly costly missing indexes, identifying what SQL statements are running on
your server now, and retrieving the cached plan for an already executed query. In
addition, a useful simple monitor has been provided.

 The rest of the book will provide many useful example code snippets, which cover
specific categories of DMVs but always with a focus on the developer’s/DBA’s needs.
Because we tend to use similar patterns for many of the SQL snippets, it makes sense
to discuss these common patterns first, which I’ll do in the next chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

Common patterns
The core of this book will supply many ready-to-run code snippets that will give
you useful information about the cause of your performance problems, show how
to improve your SQL queries, and also give you a better understanding of your
SQL Server.

 Many of the code snippets in this book have approaches (patterns) that are
used over and over again. Rather than explain the patterns repeatedly for each of
the code snippets that use them, the purpose of this chapter is to explain these pat-
terns once, in detail. Please feel free to refer back to this section if you’re unsure of
some of the common code that you’ll see repeatedly in the snippets throughout
this book.

 We’ll kick off with a look at how you can reduce any blocking the DMV code
snippets might cause or encounter.

This chapter covers
■ Common patterns used repeatedly in code

snippets
■ Calculating the differences between DMV

snapshots
■ Reading cached plans
31

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Common patterns
2.1 Reducing blocking
When SQL queries run concurrently, locks are necessary to ensure the integrity of any
changes. For example, a SELECT statement will issue locks that may prevent an
UPDATE statement from running, because the latter will want exclusive access to the
relevant rows. These locks can result in blocking, which causes queries to run more
slowly, and potentially locks can lead to client timeouts or, at its extreme, deadlocks.

 To minimize the effect of our code snippets on other running routines, the scripts
given in this book will typically start with the following statement:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

This statement ensures that no locks are taken by the subsequent statements; in
addition, it doesn’t honor most existing locks. Both of these aspects will improve
the performance of this book’s code snippets and other queries that are running
on the server.

2.2 Using CROSS APPLY
The CROSS APPLY function is used to join many DMVs with their associated DMFs. The
APPLY clause lets you join a table with a table value function (TVF). Table value func-
tions are similar to other SQL functions, but instead of returning simple data, they can
return tables. This can provide a powerful alternative to using views. They can be used
anywhere a view or table can be used.

 In essence, CROSS APPLY returns a row, if the right table source returns a row when
it accepts a parameter from the left table source. A CROSS APPLY can be viewed as sim-
ilar to an INNER JOIN. The related OUTER APPLY returns a row from the left table
source irrespective of whether the parameter passed to the right table source returns a
row; in this respect it acts like an OUTER JOIN.

 The following example illustrates how CROSS APPLY is used. The query reports on
the first 20 SQL queries on the server, together with when they were last executed.
Detailed metrics of each query are recorded in the sys.dm_exec_query_stats DMV;
these include the sql_handle used to identify the underlying query text. To obtain this
SQL text, the sql_handle is passed as a parameter to the sys.dm_exec_sql_text DMF,
and the DMV and DMF are joined via CROSS APPLY.

SELECT TOP 20 qt.text, qs.last_execution_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt

2.3 Restricting output to a given database
Some of the DMVs collect data at the server instance level. Luckily, many also record a
database identifier that can be translated into a database name. This allows you to tar-
get a specific database or indeed to compare the different databases on the server to
determine which databases are interesting and worthy of further investigation.

 For example, you can get the number of reads and writes that have taken place on
a specified database by running the query given in listing 2.1. The number of reads
www.it-ebooks.info

http://www.it-ebooks.info/

33Restricting output by using the TOP command
and writes (input/output, or I/O) reflects the number of retrievals and modifications
occurring on the server. This is useful for determining the effectiveness of I/O subsys-
tems, indexes, and transactional/reporting contention.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT SUM(qs.total_logical_reads) AS [Total Reads]
 , SUM(qs.total_logical_writes) AS [Total Writes]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
WHERE DB_NAME(qt.dbid) = 'ParisDev'
GROUP BY DB_NAME(qt.dbid)

The built-in Transact-SQL (T-SQL) function DB_NAME takes as its input a database
identifier and returns the related database name. We use this in our query to restrict
the query so it returns only data for the database we’re interested in (ParisDev in
our example).

 As well as restricting output to a given database, you can further restrict output in
many scripts by specifying the database schema or even a subset of detailed objects
(for example, indexes that belong to a given table).

2.4 Restricting output by using the TOP command
Sometimes you’re interested in only the extreme examples of problems, because this
allows you to target your efforts on areas that you know will have the most significant
impact. For example, if you’re interested in the longest-running queries, you could
get a list of 100 or more of them. But it’s probably true that the most expensive 10 or
20 will account for most of the slow performance seen on the server.

 T-SQL has the TOP keyword to limit the number of rows output. If you order the
query output by the item you’re interested in (for example, query duration), and if
you then apply a TOP 10 to the query, you’ll get the top 10 queries, as defined by the
ORDER BY clause.

 For example, to find the top 10 longest-running queries, you can run the query
given in the following listing. Here the results are ordered by the Total Time column,
and the top 10 b are retrieved.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 10
 qs.total_elapsed_time AS [Total Time]
 , qs.execution_count AS [Execution count]
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE

Listing 2.1 Restricting output to a given database

Listing 2.2 Top 10 longest-running queries on server

Specify
database here

Number of rows
to report onB
www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Common patterns
 qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY [Total Time] DESC;

You can hardcode the number of rows you want returned by the TOP expression, but
this hardcoded value can be replaced by a variable value. This can be useful in giving
you a single point of change, in a batch of SQL scripts, for specifying the number of
rows you want returned by the TOP command.

2.5 Creating an empty temporary table structure
Often you want to create a temporary table to hold the results of any transient data,
especially if you’re collecting data from various sources/databases for comparison
purposes. The easiest way for you to do this, so that you automatically get the correct
column names and data types, is to use a query that joins the relevant tables but has a
WHERE condition of 1 = 2 b. Clearly this condition means no rows will be retrieved;
however, the temporary table will be created with all the relevant metadata. An exam-
ple of this is shown here.

SELECT f.FactorId, f.FactorName, pf.PositionId
INTO #Temp01
FROM dbo.Factor f
INNER JOIN dbo.PositionFactor pf ON pf.FactorId = f.FactorId
WHERE 1 = 2

The query plan for this query is shown in figure 2.1
 Note that this method is fast because the query itself isn’t executed. You can see

this from the query plan shown in figure 2.1. Instead, the table’s metadata is queried
to obtain the data types and data names.

Listing 2.3 Creating a temporary table WHERE 1 = 2

This creates
empty table

B

Figure 2.1 Execution plan for WHERE 1 = 2
www.it-ebooks.info

http://www.it-ebooks.info/

35Looping over the databases on a server
2.6 Looping over the databases on a server
Often servers contain many databases, and the server’s resources are shared among
these databases. This means that no matter how optimized a given database is, its que-
ries could still perform suboptimally because another database on the server is run-
ning poorly and hogging the server’s shared resources. These shared resources
include CPU, memory, and tempdb. Because of this, where possible, you should con-
sider all the databases on the server when you inspect the DMVs, with a view to improv-
ing performance.

DMVs report data at a server or database-level of detail. For example, the DMV
sys.dm_os_wait_stats reports at the server level the causes of all the waits on the server
irrespective of individual databases. But sometimes you need to obtain data at the
database-level of detail, for example, joining DMV data with database-level data con-
tained in the catalog views. This typically provides richer data. For example, you may
want to retrieve index information from the catalog view sys.indexes; such informa-
tion includes index name and type of index.

 The data held by the sys.indexes view is held in each database on the server. In
order to extract this index data, so you can compare the data across all databases on
the server, you need to loop around all the databases on the server. Luckily, Micro-
soft provides a stored procedure for doing this, the relatively little-documented
sp_MSForEachDB.

 As an example of its use, you can print out the name of each of the databases on
the server using the following command:

EXEC sp_MSForEachDB 'PRINT ''?'';'

Now back to our specific DMV use. We need to loop around the databases and join to
the relevant database-specific sys.indexes catalog view, so we can obtain some useful
information about the index, including the index name and type of index. In the fol-
lowing case we’ll use the example of finding the most-used indexes to demonstrate
the looping-over-the-databases pattern.

Looping over the tables in a database
As an interesting side note, Microsoft also provides another, related stored proce-
dure, which loops over the tables within a given database. For example, to discover
the names of each of the tables in a given database, together with the number of
rows they contain, you can run the following SQL query:

EXEC sp_MSForEachTable 'PRINT ''?''; SELECT ''?'' as [TableName],
COUNT(*) AS [RowCount] FROM ?;'

This pattern can be used for various maintenance tasks, such as marking the
tables for recompilation (this effectively recompiles any stored procedures that use
the tables) or updating a table’s statistics.
www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Common patterns
Knowing about the most-commonly used indexes is important, because it suggests
they’re the primary means of accessing data. Knowing this, you should ensure that
everything about these indexes is optimal. For example, make sure the statistics are
up to date and have a good sampling percentage and the fill factor is such that you
retrieve as much data as possible for every read (taking into account any updates/
inserts that may occur). You should also ensure that the level of index fragmenta-
tion is low. Alternatively, a highly used index may indicate that a more optimized
index is required but isn’t available, so SQL Server is forced to use whatever index is
available, resulting in the apparent heavy index usage. Cross-checking this against
the missing indexes DMV will help determine if this is true. Don’t worry if you’re not
familiar with all the index terms I’ve just mentioned; they’ll be explained fully in
chapter 3, “Index DMVs.”

 Running the code snippet given in the following listing will loop over each
database on the current server and report on the 10 most-used indexes across all
the databases.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , (s.user_seeks + s.user_scans + s.user_lookups) AS [Usage]
 , s.user_updates
 , i.fill_factor
INTO #TempUsage
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE 1=2

EXEC sp_MSForEachDB 'USE [?];
INSERT INTO #TempUsage
SELECT TOP 10
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , (s.user_seeks + s.user_scans + s.user_lookups) AS [Usage]
 , s.user_updates
 , i.fill_factor
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE s.database_id = DB_ID()

Listing 2.4 Looping over all databases on a server pattern

Temp table to
hold results

B

Loop around
all databases

C

www.it-ebooks.info

http://www.it-ebooks.info/

37Retrieving a query’s cached plan and SQL text
 AND i.name IS NOT NULL
 AND OBJECTPROPERTY(s.[object_id], ''IsMsShipped'') = 0
ORDER BY [Usage] DESC'

SELECT TOP 10 * FROM #TempUsage ORDER BY [Usage] DESC

DROP TABLE #TempUsage

The code snippet in listing 2.4 first creates a temporary table using the WHERE 1 = 2
pattern described earlier b. This creates a data structure with the correct names and
data types. Next, we call the stored procedure sp_MSForEachDB C, with two parame-
ters. The first parameter specifies the database to use (this is enumerated and is repre-
sented by a question mark); the second parameter is the query we want to run on that
database. You’ll notice that we select the 10 most-used indexes on each database, as
defined by their usage D, and store their details (name and various counters) into the
temporary table. Finally, we select the 10 most-used indexes from the temporary table
(remember that this reflects all the databases).

NOTE For the results to make sense, the number of rows associated with the
TOP command given with the sp_MSForEachDB command must match
the number used for the final retrieval from the temporary table.

Remember, here we’re explaining the pattern, not the specifics. The details will be
explained later in the appropriate DMV section, for example, in examining the most-
costly unused indexes (section 3.3.1).

2.7 Retrieving a query’s cached plan and SQL text
When a query executes, a cached plan is created for it. A cached plan describes, at a
granular level, how the query will be executed, for example, how indexes will be
used. In many of our snippets we’ll retrieve the cached plan associated with a query.
A cached plan is a great starting point in determining why a query is behaving as it
is, for example, why it’s running slowly. Often it also offers clues on how perfor-
mance can be improved.

 One of the examples given in chapter 1 showed how to quickly find a cached plan.
Although the query was immediately usable, I didn’t explain how it performed its
magic. I’ll do that now. The following listing shows a simplified version of the “Quickly
find a cached plan” example given in chapter 1.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 10
 st.text AS [SQL]
 , DB_NAME(st.dbid) AS DatabaseName
 , cp.usecounts AS [Plan usage]
 , qp.query_plan
FROM sys.dm_exec_cached_plans cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st

Listing 2.5 Quickly find the most-used cached plans—simple version

Identify most-used
indexes

D

Show SQL
query

B

Show
cached plan

C

Join relevant
DMVs
www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Common patterns
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
WHERE st.text LIKE '%CREATE PROCEDURE%'
ORDER BY cp.usecounts DESC

Listing 2.5 explains how to extract the text of the SQL query b and cached plans C.
The DMV sys.dm_exec_cached_plans contains various metrics about the cached plan
(for example, the number of times it has executed) but not the cached plan itself.
Instead, it contains the identifier of the cached plan, named plan_handle, which can
be used to retrieve the cached plan. To retrieve the cached plan, we pass the plan
handle, via the CROSS APPLY function, to the DMF sys.dm_exec_query_plan. The
cached plan is retrieved as XML and is shown in the output under the column named
query_plan. In this example, we search for cached plans that contain the text
“CREATE PROCEDURE” D.

NOTE We’ve also included a join to the DMF sys.dm_exec_sql_text, to obtain
the text of the query, because we typically want to filter the results to find a
specific query. Obtaining the text of a query works in a similar way to obtain-
ing the cached plan. We pass the cached plan’s plan_handle, via the CROSS
APPLY function, to the DMF sys.dm_exec_sql_text. This is discussed in more
detail next.

An example of the type of output for this query is shown in figure 2.2.
 Often you’ll want to determine information about a given SQL statement within a

SQL query. I’ll discuss how to achieve this next.

2.8 Extracting the Individual Query from the Parent Query
In many cases you’ll show details that relate to a given SQL statement (the Individual
Query), within a stored procedure or batch (the Parent Query). The details of the
specific SQL statement are obtained by applying start and end offsets to the Parent
Query. The start and end offsets are given in the DMV sys.dm_exec_query_stats and
are applied to the text of the SQL query that’s obtained from the DMF sys.dm_exec_
sql_text. Running the SQL query in the following listing will retrieve the 20 most-
executed individual lines of SQL on the server.

Search for plans
with this textD

Figure 2.2 Output showing the most-used cached plans that contain the text “CREATE PROCEDURE”
www.it-ebooks.info

http://www.it-ebooks.info/

39Identifying the database used by ad hoc queries
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 qs.execution_count
 , SUBSTRING (qt.text, (qs.statement_start_offset/2) + 1
 , ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
ORDER BY execution_count DESC;

The SQL text (qt.text) is stored using the NVARCHAR data type. This uses Unicode
storage and takes twice the space of the corresponding International Organization
for Standardization (ISO) VARCHAR storage. The offsets are zero-based and are
applied to the SQL text as if it were ISO format (hence the need to divide the offset
difference by 2). The SUBSTRING function is one-based, hence the need to add 1 to
the offset differences.

 With these conditions in mind, to extract the Individual Query from the Parent
Query we use the SUBSTRING function. This takes three parameters: the first is the
text involved (our SQL text), the next is the start offset, and the last is the length
(calculated as the difference between the end and start offsets). In this particular
case, we set the start of the SQL text to extract as the adjusted offset start, for a length
defined as the difference between the adjusted start and the adjusted end, all modi-
fied to take into account the change from zero-based offset to one-based offset of the
SUBSTRING function.

 It’s possible to create a SQL function that accepts as parameters the Parent Query
text together with the start and end offsets and use these to return the Individual
Query. I haven’t done this in the scripts given in this book, because I wanted the
scripts to be understood as standalone utilities.

2.9 Identifying the database used by ad hoc queries
When a stored procedure is run, information about the database it runs on is
stored internally and accessed via the DMF sys.dm_exec_sql_text. When ad hoc SQL
is run (a SQL query not in a stored procedure), the database it runs against is
shown as NULL in the DMF sys.dm_exec_sql_text. This can be problematic when
you’re trying to investigate all the queries (both stored procedures and ad hoc)
that run on a database.

 Luckily, you can obtain the database information from another DMF named
sys.dm_exec_plan_attributes. This DMF takes as its input parameter the plan_
handle identifier from the cached plans DMV sys.dm_exec_cached_plans. The DMV

Listing 2.6 Extracting the Individual Query from the Parent Query
www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Common patterns
sys.dm_exec_plan_attributes contains many values for the various attributes associ-
ated with a database (many relate to connection variables). You can select the one
that relates to the database identifier (dbid) using the following condition:

WHERE pa.attribute = 'dbid'

You can find the top 20 most-used cached plans, for both stored procedures and ad
hoc queries, with the database shown, by running the SQL query given in the follow-
ing listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 st.text AS [SQL]
 , cp.cacheobjtype
 , cp.objtype
 , COALESCE(DB_NAME(st.dbid),
 DB_NAME(CAST(pa.value AS INT))+'*',
 'Resource') AS [DatabaseName]
 , cp.usecounts AS [Plan usage]
 , qp.query_plan
FROM sys.dm_exec_cached_plans cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
OUTER APPLY sys.dm_exec_plan_attributes(cp.plan_handle) pa
WHERE pa.attribute = 'dbid'
ORDER BY cp.usecounts DESC;

The relevant part of the query for obtaining the name of the database uses the built-in
T-SQL COALESCE function. This returns the first non-NULL value from a nested list of
potential values. In our case, we first try to retrieve the database id value (dbid) using
the DMF sys.dm_exec_sql_text b. If this is NULL, we try to retrieve it using the DMF
sys.dm_exec_plan_attributes C. If this also is NULL, it’s assumed the query runs from
the internal Microsoft database named ‘Resource’ D.

NOTE In the output, we identify those queries that are ad hoc by append-
ing an asterisk to the database name; alternatively, we could look at the obj-
type column.

2.10 Calculating DMV changes
As was mentioned earlier, there are various ways of determining the effect of queries
via the DMVs. Typically, the easiest method is to reset the DMVs before you do your
work; then the DMV values will reflect your work. But this isn’t always practical, espe-
cially on a production server.

 Because DMV data is cumulative, you can deduce the effect of your queries by tak-
ing a snapshot of the relevant DMV columns, running your queries, and then taking
another DMV snapshot. You can determine the effect of your queries by calculating

Listing 2.7 Identify the database of ad hoc queries and stored procedures

Look in SQL
text DMF

B

Else in
attributes DMF

C

Else default to
Resource databaseD
www.it-ebooks.info

http://www.it-ebooks.info/

41Calculating DMV changes
the differences between the two DMV snapshots. In the next example, we’ll get the
delta between two DMV snapshots when determining the effect of a given stored
procedure or batch of SQL (you should replace these with your own routines that
you want to test).

 You can use this common pattern for whichever aspect of performance is under
investigation, like the longest-running or most-executed queries. The example in list-
ing 2.8 determines the effect of running a given stored procedure (dbo.IWSR) and an
inline SQL statement (SELECT * FROM dbo.appdate). Here specifically we’ll look at
elapsed time (the total time taken to run a SQL query).

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT sql_handle, plan_handle, total_elapsed_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkSnapShot
FROM sys.dm_exec_query_stats

EXEC dbo.IWSR
SELECT * FROM dbo.appdate

SELECT sql_handle, plan_handle, total_elapsed_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PostWorkSnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkSnapShot p1
RIGHT OUTER JOIN
#PostWorkSnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
ORDER BY [Duration] DESC

DROP TABLE #PreWorkSnapShot
DROP TABLE #PostWorkSnapShot

The first part of listing 2.8 gets a pre-work snapshot of the relevant data from the DMV
sys.dm_exec_query_stats and stores it in a temporary table named #PreWorkSnapShot b.

Listing 2.8 Determine query effect via differential between snapshots

Get pre-work
snapshot

B

Run queriesC

Get post-work
snapshot

D

Extract
delta

E

RIGHT
OUTER JOIN

F

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 Common patterns
Next, we run the SQL query that we want to determine the effects of C. We then take
another snapshot of DMV data (same columns as the first snapshot) and store the
results in a temporary table named #PostWorkSnapShot D. Next, we calculate the
differences between the DMV snapshots E, and finally we tidy up by dropping the tem-
porary tables.

 To calculate the difference between the snapshots, we first need to join them on
the columns that uniquely identify the SQL statement in the query. This means the
sql_handle, plan_handle, the statement_start_offset, and the statement_end_offset.
Note that because the SQL query may not have run previously, we use a RIGHT OUTER
JOIN between the pre-work snapshot and the post-work snapshot F. Additionally,
because the data may not exist in the first snapshot, any calculations (for example,
duration of query) will use only the values supplied by the second snapshot. We’re
interested in only those SQL statements that have executed between the snapshots, so
we use a WHERE clause to get those statements that have different execution counts.
Lastly, we sort the results by query duration.

 The results of running the two embedded queries (EXEC dbo.IWSR and SELECT *
FROM dbo.appdate) are given in figure 2.3. There are three output grids. The first
grid shows the result of executing the stored procedure dbo.IWSR, the second grid
shows the result of executing the inline SQL query SELECT * FROM dbo.appdate, and
the last grid shows the DMV delta associated with each query. You’ll note that the last
grid also includes the pre-work DMV query itself; because this is also a SQL statement,
it will be reported on!

 The last grid in figure 2.3 shows the duration associated with each of the
three queries we ran, ordered by duration. We could display many other indica-
tors of performance, and we’ll show these throughout this book. Hopefully, list-
ing 2.8 illustrates how easy it is to calculate the effect of running queries on the
relevant DMVs.

Figure 2.3 Results of running DMV delta code given in listing 2.8
www.it-ebooks.info

http://www.it-ebooks.info/

43Reading cached plans
It’s also possible to replace the names of the routines under investigation with a time
interval, allowing you to record the impact of all queries running over the period
and their impact on the DMVs over that period. This is implemented with the
WAITFOR DELAY command. The format of the command is WAITFOR DELAY
‘hh:mm:ss’, where hh refers to the number of hours to wait, mm is the number of
minutes, and ss is the number of seconds. For example, to implement a delay of five
minutes, you’d use the following:

WAITFOR DELAY '00:05:00'

Okay, so we’ve discussed a pattern you can use to determine the effect of a query.
There are, however, some caveats to be aware of. The DMVs in the example have a
server-wide scope, so if other queries are running on the server (on any of the data-
bases), information about these will also be recorded. It’s possible to get around these
problems by running the example at a time when other queries aren’t running, or fil-
tering the results to include only your database (if you have exclusive access), or run-
ning on your own database where you have more control. That said, you can use this
caveat to your advantage, because sometimes you might want to know the sum effect
of all the queries running on the server.

 When you run a query, a cached plan is produced. Knowing how to read this plan
will increase your understanding of a performance problem and potentially offer solu-
tions on improvement. We’ll discuss this next.

2.11 Reading cached plans
When a SQL query executes, details of how it obtains its data or performs any modi-
fications are recorded in the cached plan. This ensures that other similar queries
can reuse this cached plan and not expend time on determining an appropriate
access mechanism.

 As described earlier, many of the scripts in this book will show the cached plan as
part of the output. The cached plan is a great tool for determining why a query is
behaving as it is and often provides clues on how you can improve performance.

2.11.1 Targeting the area of concern

In chapter 1, I provided an overview on what cached plans contain and how
they’re interpreted. In essence, a batch of SQL queries is represented by the query
plan. Each query in the batch is assigned a high-level cost, which together total
100%. In addition, for each query, you can see the individual components that are
also given a costing out of 100%. Typically, to find the troublesome area of con-
cern in the cached plan, you first look for the query that has a high cost (relative
to the batch), and then you look at the components within that query to discover
the component with the high cost. This will often indicate the cause of the under-
lying problem.
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 Common patterns
In the example given in figure 2.4, you can see that all the cost is associated with the
third statement (Query 3), and within this, the Sort component is responsible for
the majority of the cost.

 The approach described here is ideal when you have the plan of a query that
you’ve identified as being troublesome. Another approach will often prove useful in
improving your queries: searching the cached plans directly for conditions that you
know may cause problems. I’ll provide various scripts to do this in chapter 5, for exam-
ple, section 5.1, “Queries with missing statistics.”

2.11.2 Things to look out for

Various conditions are known to impede query performance. I’ll describe some of
them here briefly, so you’ll recognize them in your cached plan. Chapter 5 will pro-
vide detailed scripts to identify these conditions.

MISSING INDEXES

Indexes can have a dramatic effect on query performance. When the query optimizer
wants to use an index but it isn’t present, it records details of the missing index with
the cached plan. In the XML version of the cached plan, missing indexes are identi-
fied by the XML element name of <MissingIndexes>. In the graphical version of the
cached plan, they’re represented as shown in figure 2.5 (as green text, immediately
below the query text). Note that this graphical representation doesn’t occur with SQL
Server 2005.

Figure 2.4 Cached plan showing cost by statement and within each statement
www.it-ebooks.info

http://www.it-ebooks.info/

45Reading cached plans
MISSING STATISTICS

Like indexes, statistics can have a dramatic effect on query performance. When the
query optimizer wants to use statistics about a column but it isn’t present, it records
details of the missing column statistics in the cached plan. In the XML version of the
cached plan, missing column statistics are identified by the XML element name
<ColumnsWithNoStatistics>. In the graphical version of the cached plan, they’re rep-
resented as a yellow triangle containing an exclamation mark. In figure 2.6 it can be
seen immediately above the Table Scan text.

TABLE SCANS

When a query performs a table scan, it’s bypassing any indexes that may be present
and reading the underlying table, typically in its entirety. Although this may not be a
concern for small tables, for larger tables it’s worth investigating.

 For small tables, even if an appropriate index is present, the optimizer may decide
it’s cheaper to bypass the index and perform a table scan instead. For larger tables,
the table scan may occur because an index is missing or deemed to be inappropriate.

 In the XML version of the cached plan, table scans are identified by the XML ele-
ment name starting with <TableScan. In the graphical version of the cached plan,
they’re represented as shown in figure 2.7.

Figure 2.5 Cached plan identifying a missing index

Figure 2.6
Cached plan identifying a
missing column statistics
www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2 Common patterns
INDEX LOOKUPS

Index lookups (also known as key look-
ups) typically occur when a nonclus-
tered index is used to partially access
the required data but then needs to
access the underlying clustered index
to retrieve the rest of the required
data. This can be expensive if the oper-
ation is performed many times.

 In the XML version of the cached
plan, index lookups are identified by
the XML element name starting with
<IndexScan Lookup. In the graphical version of the cached plan, they’re represented
as shown in figure 2.8.

DATA TYPE CONVERSIONS

The data in the database tables is arranged in columns, each with a specified data
type. If you query this data with an incorrect data type, the optimizer has to issue a
convert data type call; this is often unnecessary and should be removed. In extreme
cases, an inappropriate data type can result in an otherwise useful index not being
used, causing a derogation in performance. In the XML version of the cached plan,
data type conversions are identified in the XML by searching for the name
CONVERT_IMPLICIT, as shown in figure 2.9; it doesn’t have a corresponding graphical
representation.

 Later, in chapter 5, I’ll provide a script that searches for these factors and more
and discusses the consequences of these identified conditions. Such a script is given in
section 5.1.

 Next we’ll look at how to build dynamic SQL queries to process a set of rows
without using a cursor; we’ll use this heavily in chapter 10 concerning the self-
healing database.

Figure 2.8 Cached plan identifying an index lookup

Figure 2.7
Cached plan identifying a
table scan

Figure 2.9 Cached plan shown as XML, identifying an implicit data type conversion
www.it-ebooks.info

http://www.it-ebooks.info/

47Building dynamic SQL
2.12 Building dynamic SQL
Sometimes during development it can be difficult to create a set-based solution to a
problem. Set-based solutions contain SQL that tells the engine what to do, not how to
do it. A non-set-based solution typically involves processing each row individually. This
approach is often not the most efficient algorithm. In addition, frequently you’ll want
to apply a given instruction to a set of data, for example, to obtain the number of rows
in each of the tables on the database.

 In both of these cases, you could use a cursor to obtain the result, but cursor usage
is typically discouraged because it can lead to inefficient scripts. But it’s possible to use
another approach using dynamic SQL. This approach is used often in chapter 10.

 The purpose of the example given here is to show the pattern used to dynamically
generate SQL without a cursor. The next listing shows how you can apply instruc-
tions—in this case, getting the row count—to a set of data—in this case, the tables in
the database.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
INTO #TableDetails
FROM INFORMATION_SCHEMA.tables
WHERE TABLE_TYPE = 'BASE TABLE'

DECLARE @DynamicSQL NVARCHAR(MAX)
SET @DynamicSQL = ''

SELECT
 @DynamicSQL = @DynamicSQL + CHAR(10)
 + ' SELECT COUNT_BIG(*) as [TableName: '
 + TABLE_CATALOG + '.' + TABLE_SCHEMA + '. ' + TABLE_NAME
 + + '] FROM ' + QUOTENAME(TABLE_CATALOG) + '.'
 + QUOTENAME(TABLE_SCHEMA) + '. ' + QUOTENAME(TABLE_NAME)
FROM #TableDetails

EXECUTE sp_executesql @DynamicSQL

DROP TABLE #TableDetails

The first part of listing 2.9 gets the details of the tables we want to obtain the row
count from. This information is stored in a temporary table named #TableDetails b.
We then declare a dynamic variable of type NVARCHAR(MAX); this data type is needed
for us to execute the dynamic SQL. The dynamic SQL is built up by concatenating the
current value of the dynamic SQL with details of each row in the temporary table C.
Finally, the dynamic SQL is executed D.

 Next we’ll look at how to print the content of large variables, which can be invalu-
able for debugging purposes.

Listing 2.9 Example of building dynamic SQL

Get table
details

B

Build up
dynamic SQL

C

Run the
dynamic SQL

D

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2 Common patterns
2.13 Printing the content of large variables
As explained in the previous section, in chapter 10 the SQL to execute is built up
dynamically. Sometimes, for example, to understand what’s about to be updated, it
makes sense to examine the content of this dynamic SQL before the underlying SQL
is executed.

 By default, the PRINT command will print out the first 4,000 characters of an
NVARCHAR variable. This is the type needed to allow you to execute the dynamic SQL
via the system routine sp_executesql. Because the content of your variable may be big-
ger than 4,000 characters, you need an algorithm to print out additional data.

 You can extend the example given in the preceding section to provide the dynamic
SQL that you can use as input to your print algorithm.

 The first part of the next listing is the same as given in the previous section. It dif-
fers in that the EXECUTE statement has been commented out, and it’s followed by the
print algorithm.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
INTO #TableDetails
FROM INFORMATION_SCHEMA.tables
WHERE TABLE_TYPE = 'BASE TABLE'

DECLARE @DynamicSQL NVARCHAR(MAX)
SET @DynamicSQL = ''

SELECT
 @DynamicSQL = @DynamicSQL + CHAR(10)
 + ' SELECT COUNT_BIG(*) as [TableName: '
 + TABLE_CATALOG + '.' + TABLE_SCHEMA + '. ' + TABLE_NAME
 + + '] FROM ' + QUOTENAME(TABLE_CATALOG) + '.'
 + QUOTENAME(TABLE_SCHEMA) + '. ' + QUOTENAME(TABLE_NAME)
FROM #TableDetails

--EXECUTE sp_executesql @DynamicSQL

DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@DynamicSQL))
BEGIN
 PRINT SUBSTRING(@DynamicSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

PRINT SUBSTRING(@DynamicSQL, @StartOffset, @Length)

DROP TABLE #TableDetails

Listing 2.10 Example of printing the content of large variables

Get table
details

Build up
dynamic SQL

Run dynamic SQL
(commented out)

Print
algorithm

B

www.it-ebooks.info

http://www.it-ebooks.info/

49Common terms and acronyms
To print the content of the variable @DynamicSQL, we extract its content in blocks of
4,000 characters, via the SUBSTRING command, altering the start position dynamically
within the WHILE loop b.

 Next we’ll briefly discuss some of the more common acronyms and terms used
throughout this book.

2.14 Common terms and acronyms
Each industry, and subspecialty in industry, develops its own language to describe its
work efficiently and effectively. In order for you to get the most out of this book, I’ve
listed some of the more common terms that will be used throughout this book in
table 2.1.

Table 2.1 Common terms and their meaning

Term Description

Ad hoc query A query that isn’t within a stored procedure.

Batch A collection of one or more SQL statements that are run sequentially, typically
separated by a GO statement.

Cached plan A query plan that is to be reused. Often synonymous with query plan.

CLR Common Language Runtime.

Data type The type of data a variable can contain, for example, integer or varchar.

DMF Dynamic Management Function.

DMV Dynamic Management View.

DMV snapshot
delta

Process used to obtain the difference between DMV counter values taken at
different times. First a snapshot is made of the relevant DMV counters, a given
time interval passes (or a SQL query or batch is run), then another DMV snap-
shot is taken, and finally the difference between the snapshots is calculated.
Useful for determining the effect on the DMVs of a given time interval or query
run during that time interval.

Index Data structure used to provide fast access to the underlying data.

I/O Input/output.

Lock Protection mechanism, to prevent inconsistent data.

Query plan Describes, in detail, how the query will be executed. Often synonymous with
cached plan.

Script A collection of one or more SQL queries, stored procedures, or a combination of
both.

Server instance It’s possible to install multiple instances of SQL Server on a given Windows
server. Each of these server instances has its own tempdb and set of DMVs. In
the interest of simplicity, I’ll refer to the word server in this book, but typically
this will relate to the server instance.
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 2 Common patterns
I needed to make a trade-off with the code snippets and their commentary. Many of
the code snippets within each chapter are related, and this means there’s a certain
degree of repetition and overlap in both the code snippets and their related discus-
sions. Rather than edit out this repetition, I’ve left it in, to allow each code snippet to
be more self-contained. Hopefully, you’ll appreciate this when you come to revisit the
specific code examples in the future.

2.15 Known problems that may affect the scripts
During testing a few minor problems with the scripts were reported; these follow.
Rather than amend the scripts to cater for these relatively rare and unusual condi-
tions, a description of the problem together with any solution is given.

2.15.1 SQL Server compatibility level set to below 2005

The DMVs are part of SQL Server 2005 and higher. If you have a database with a com-
patibility level of 80 or lower (that is, you’re simulating SQL Server 2000 and below)
on a 2005 or 2008 SQL Server, running some of the scripts may fail.

 For queries that loop over all the databases on the server (that is, use
sp_MSForEachDB), an error may be reported, but the query still runs correctly on the
other databases (that have a compatibility level of 90 and above).

 If you run some scripts from within an SSMS window where the database drop-
down list contains a database that has a compatibility level below 90 (that is, before
SQL Server 2005), the query may fail. The solution in this case is to change the
database in the database drop-down list to one that has a compatibility level of 90
or above.

2.15.2 An OFFLINE database

For queries that loop over all the databases on the server (that is, use sp_
MSForEachDB), an error may be reported if one of the databases is marked as
OFFLINE. The solution is to add an INNER JOIN to the script as follows:

INNER JOIN sys.databases d ON d.database_id = DB_ID()
 AND state_desc = ''ONLINE''

Snippet A collection of SQL statements used to perform a piece of functionality. In this
book, it’s synonymous with script.

SSMS SQL Server Management Studio.

Stored procedure A collection of SQL statements wrapped in a container. This provides various
advantages such as plan reuse, improved maintenance, and improved security.

T-SQL Transact-SQL; this is Microsoft’s flavor of SQL.

Table 2.1 Common terms and their meaning (continued)

Term Description
www.it-ebooks.info

http://www.it-ebooks.info/

51Summary
This code joins to the sys.databases table on the database defined by the function
DB_ID(), which is the current database, and also where the database is online. The
code results in offline databases being excluded.

2.16 Summary
The purpose of this chapter was to explain the common patterns of code that will
occur repeatedly within the code snippets in subsequent chapters. We discussed the
following patterns:

■ Using CROSS APPLY
■ Restricting output to a given database
■ Restricting output by using the TOP command
■ Creating an empty temporary table structure
■ Looping over the databases on a server
■ Retrieving a query’s cached plan and SQL text
■ Extracting the Individual Query from the Parent Query
■ Identifying the database used by ad hoc queries
■ Calculating DMV changes
■ Reading cached plans

You saw how you can restrict your results to a given database. This is important
because often you’re concerned only with a given database. We also obtained the data-
base associated with ad hoc queries (because this isn’t recorded in the usual DMV).
Similarly, we discussed the TOP statement, also used to filter the results, to obtain the
most important results. This is important because often a small number of queries are
responsible for a large number of performance problems.

 We discussed a quick method of creating temporary tables, which is needed when
you want to loop over all the databases on the current server, extracting results as
you go.

 We demonstrated a simple method of extracting the Individual Query from its
Parent Query as well as discussed in depth calculating the impact of queries on DMVs
by obtaining the delta between two DMV snapshots.

 Now that we’ve reviewed the common patterns that will be used repeatedly in the
code snippets, let’s move on to our first set of detailed scripts and investigate index-
related DMVs.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

DMV discovery

In this part we’ll examine in detail various aspects of performance problems
relating to indexes, queries, the operating system, the Common Language Run-
time, transactions, space usage, and much more. The code snippets will give you
a head start in identifying and solving your performance problems. You’ll inves-
tigate the concept of the self-healing database and use the provided code snip-
pets to automate many maintenance aspects of your SQL Server. Implementing
the code snippets and advice from this part of the book will provide you with a
more optimally performing SQL Server.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index DMVs
Indexes are used to improve the performance of data retrieval, to order data, and
sometimes to enforce uniqueness. It’s the first of these uses, improving data
retrieval, that I’ll focus on in this chapter. We’ll use the DMVs to identify indexes
that may be suboptimal or unnecessary, as well as indexes the optimizer would like
to use but are missing. All these aspects of index optimality can affect the perfor-
mance of your SQL queries, sometimes significantly. I’ll provide discussions within
each code snippet on index optimization.

 After we’ve examined various code snippets relating to index DMVs, I’ll summa-
rize the conflicting requirements of indexes with regard to data retrieval and modi-
fication and offer a holistic view of how index usage can be balanced. Let’s begin by
examining why indexes are important.

This chapter covers
■ Background on the importance of indexes
■ Code snippets identifying aspects of

suboptimal indexes
■ Discussions on how to optimize indexes
■ Holistic approach to index usage
55

www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 Index DMVs
3.1 The importance of indexes
Because tables in production systems may easily contain many millions of rows, read-
ing an entire table’s content without using indexes would be impractical. Without an
index, the entire table may need to be read to satisfy any queries run against it.
Indexes typically enable queries to run quickly and efficiently.

3.1.1 Types of index

The data in an index, or indeed a table, is held as rows, and these rows belong to a
page. A page (or group of pages) is typically the unit of data transfer when data is
read. A brief description of the types of indexes is given in table 3.1.

Indexes are data structures that duplicate part of the data already held in the
underlying table the index relates to. Although this duplication can be costly for
updates, it provides a quick way of accessing the table’s data. This is especially true
when the index contains all the information the query needs. In this case, the table
isn’t accessed at all; only the index is accessed. This type of index is called a cov-
ered index.

 A table can have many indexes, but only one contains all the columns and physi-
cally orders the table’s rows. This is the clustered index. The clustered index is typically
used for retrieving a range of rows between two values (for example, to retrieve all the
invoices between two invoice dates). As such, the clustered index is often determined
by the most important queries, which retrieve a range of data. Having the data physi-
cally contiguous will improve query performance, especially where you want most of
the data on the row, because each retrieved page will have related relevant data.
Tables without a clustered index are known as heaps.

 Other indexes are called nonclustered indexes; these are separate from the under-
lying table. They typically contain columns that identify a specific subset of rows
(for example, you can use them to retrieve invoices that have invoice numbers
240577, 040427, 060168, 240797). Nonclustered indexes contain a pointer back to
the underlying clustered index; this can be useful when other data needs to be

Table 3.1 Types of indexes

Type of index Description

Clustered This index is the table itself with the physical order of the rows
defined. It’s typically good for range-based queries.

Nonclustered An index that contains a subset of a table’s columns. It’s typically
good for retrieving a small subset of easily identified rows.

Covered An index that contains all the data required by a query.

Composite An index that’s composed of more than one column.

Filtered An index that’s based on a WHERE clause. This feature is present
only in SQL Server 2008 and higher.
www.it-ebooks.info

http://www.it-ebooks.info/

57The importance of indexes
retrieved from the underlying table (this is shown as an index or key lookup in the
cached plan).

 Indexes that are made up of multiple columns are called composite indexes. Some-
times the optimizer will create such a composite index dynamically, combining data
from two or more indexes, if it determines this will result in a faster query.

 You can include some additional data columns with the index key columns. This
can improve query performance because the information can be retrieved solely from
the index, rather than having to visit both the index and the underlying table’s data.
Such columns are known as included columns.

SQL Server 2008 introduced the concept of filtered indexes. These allow you to cre-
ate an index for a given WHERE clause. This is a powerful feature. In many cases,
you’re mostly concerned with either the most current data or data that has been
added recently. If you create a filtered index on the relevant tables for the most recent
data, you can have, in essence, the equivalent of a two-day-old database. Best of all, the
statistics for the filtered indexes are more precise, giving a more complete representa-
tion of the data and hopefully giving better query performance.

3.1.2 Types of index access

Indexes can be accessed via seeks, scans, and lookups. These are explained briefly in
table 3.2.

Seeks involve selectively accessing discreet rows of the index. This is ideal for queries
that can pinpoint their data relatively easily with a high degree of selectivity.

 Index scans involve accessing the index at a given point, such as a start date, and
reading the index’s data until another given point is reached, such as an end date. This
access mechanism is ideal for range queries, for example, selecting all the invoices
within a given date range. In some cases, identifying index scans in the cached plans
might indicate an index is missing; further investigation of the cached plan’s SQL
query should help determine whether this is the case.

 Index lookups involve identifying part of the information you want in the index
and then accessing the underlying table to obtain the rest of the data. Again, in
some cases, identifying lookups in the cached plans might indicate an index is miss-
ing one or more columns. Such missing columns could be added to the index as
included columns.

Table 3.2 Types of index access

Type of index access Description

Seek Selectively accesses discreet rows of data in an index

Scan Accesses a range of index rows

Lookup Selectively accesses discreet rows of data in index and then gets addi-
tional data from the index’s underlying table via a lookup
www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 3 Index DMVs
 Ideally, when you’re reviewing your SQL queries in preparation to moving them
into a production environment, you should check a query’s cached plan to determine
if it’s using the correct index access mechanism. Alternatively, you can search the
available cached plans for index access mechanisms that might be inappropriate and
check to see if they’re valid for the underlying query. I’ll provide such a code snippet
to search cached plans in chapter 5, “Further query improvements.”

3.1.3 Factors affecting index performance

Indexes are central to query performance. It’s essential to ensure that the factors that
affect the efficiency of an index are optimal. It’s important to undertake regular
housekeeping to ensure these factors are kept optimal.

 Later, in section 3.7, I’ll provide a script that identifies which indexes are used and
how these indexes are used when a given SQL query or batch of SQL is run. This will
allow you to optimize these known indexes for a given SQL query, hopefully resulting
in faster queries. Some of the factors you can optimize to improve an index’s perfor-
mance are discussed in the following sections.

FILL FACTOR

Fill factor describes how full an index page is. When you’re retrieving data, you want
each page to have as much data on it as possible. This will allow you to fulfill a query’s
needs with minimum reads, less locking, and less CPU usage. Similarly, when you’re
identifying a group of rows that are to be subsequently updated, you want to be able to
obtain as much data as possible per read operation. But when you need to insert data,
which needs to be placed in sequence with related data, the index page should con-
tain space for this. When there’s no space in the index page, page splitting will occur,
resulting in queries taking longer because lookups need to be performed.

 Your dilemma is being able to balance the need for this additional space to cater
for any inserts/updates with the need to retrieve as many rows as possible with each
page read. You can reserve some space on each index page, so that new data can be
inserted in the correct order. You do this by specifying the index’s fill factor, which is
used when the index is created or rebuilt. If the index is largely read-only, the opti-
mal fill factor for it is 100. If the index is modified often, a fill factor of 70 may be
more appropriate. These are only rough guidelines; you should test out the appropri-
ate fill factor values on your own systems. The default fill factor value is 0; this is simi-
lar to a fill factor of 100, but some space is left in the upper levels of the index for
inserted data.

 Typically, reads outnumber writes on a database by a factor of at least 5 or 10, even
on transaction-intensive systems. Database read performance tends to be inversely
proportional to the index fill factor, so a fill factor of 50% means reads are twice as
slow as when the fill factor is 100. You must take care not to overstate the role of index
updates in determining the index’s fill factor.

 You can use the following query to see the fill factor of the indexes on the tables in
the current database (the database where the query is run):
www.it-ebooks.info

http://www.it-ebooks.info/

59The importance of indexes
SELECT DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , i.fill_factor
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE s.database_id = DB_ID()
 AND i.name IS NOT NULL
 AND OBJECTPROPERTY(s.[object_id], 'IsMsShipped') = 0
ORDER BY fill_factor DESC

An example of the type of output for this query is given in figure 3.1.
 Later in this chapter, in section 3.5.1, I’ll provide a more comprehensive script to

show the importance of fill factor in greater detail.

STATISTICS

In many ways, statistics are at the heart of the decision-making engine that is SQL
Server’s optimizer. Statistics describe the distribution and density of column values.
Unless you have relevant and up-to-date statistics, which are needed to estimate the
probability of retrieving a row’s column value, a relevant index may not be used or
may be accessed incorrectly, resulting in suboptimal query performance.

 You can see the summary statistics for a given index by running a version of the fol-
lowing command in SSMS:

DBCC SHOW_STATISTICS ([schema.tableName], indexName) WITH STAT_HEADER

To find statistics details for an index named IX_Deal_5, on a table named Deal,
belonging to the schema dbo, you’d run the following command:

DBCC SHOW_STATISTICS ([dbo.deal], IX_Deal_5) WITH STAT_HEADER

Sample output for this query is shown in figure 3.2.

Figure 3.1 Output showing the fill factor of indexes
www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 3 Index DMVs
In the output, of particular relevance are the Updated, Rows, and Rows Sampled col-
umns. Using these columns, you get an idea of how old the statistics are and how
much data is present. The Updated column describes when the statistics for the
IX_Deal_5 index were last updated. The Rows column describes the number of rows
in the table, and the Rows Sampled column describes the number of rows sampled to
get statistics. Because the number of rows sampled (585,510) is smaller than the num-
ber of rows (11,913,105), the detailed statistics are based on this sample (approxi-
mately 5% of the rows were sampled). Later in this chapter, in section 3.10, I’ll
provide a more comprehensive script to show statistics in greater detail.

 Typically, you want indexes on those columns that are used in JOIN and WHERE
clauses (the joins often imply that you should implement indexes on foreign keys).
When an index is created, statistics about the columns in the index are also created.
Statistics are updated when the data in the underlying tables changes. Typically, when
a table’s data changes by 20% (since the statistics were last updated), its statistics are
automatically recalculated. Changes in the statistics also cause any queries that use the
underlying table to be recompiled, using the new statistics to produce (hopefully) a
better cached plan and a better SQL query.

 Sometimes, especially for larger tables, waiting for the table to change by 20%
takes too long, resulting in the usage of stale and suboptimal plans. I’ve known of
many queries that could be improved almost immediately by updating the table’s sta-
tistics. I’ll provide a script later in this chapter, in section 3.7, that will identify the
indexes used by a given routine or SQL batch. This will allow you to update the statis-
tics of those given indexes before the queries are run, rather than doing a blanket
table update. This will allow the statistics update to run faster or have a large sampling
percentage that should help improve query performance.

 Similarly, in section 3.10, I’ll provide a script that will describe the current state of
your index statistics. Investigating the percentage of rows changed and the last
updated columns should help in determining whether the statistics should be
updated more often than the default.

 In chapter 10, “The self-healing database,” I’ll provide a script that automatically
updates the index statistics in an intelligent manner. The script updates only the sta-
tistics of the indexes whose data has changed and does so using an intelligent sam-
pling algorithm.

FRAGMENTATION
Logical index fragmentation describes the percentage of index entries that are out of
sequence. This has an impact on indexes that are involved in scans, increasing the

Figure 3.2 Output showing the summary statistics for the index IX_Deal_5
www.it-ebooks.info

http://www.it-ebooks.info/

61The importance of indexes
amount of work they have to do because the index data isn’t contiguous. Where possi-
ble, you should remove this type of fragmentation by reorganizing or rebuilding the
index. Typically, for indexes that have more than 30% fragmentation, an index
rebuild is recommended. If the fragmentation percentage is between 10% and 30%,
index reorganization is recommended.

 You can use the following query to see the fragmentation percentage of the
indexes on a table named currency, within a database named parisdev:

SELECT i.name AS IndexName
 , ROUND(s.avg_fragmentation_in_percent,2) AS [Fragmentation %]
FROM sys.dm_db_index_physical_stats(DB_ID('parisdev'),
OBJECT_ID('currency'), NULL, NULL, NULL) s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id

Figure 3.3 shows an example of the type of output
for this query.

 Later in this chapter, in section 3.6, I’ll provide a
more comprehensive script to show the fragmenta-
tion in greater detail. In chapter 10 I’ll provide a
script that automatically defragments indexes in an
intelligent manner. The script defragments only the
indexes whose data has fragmented significantly,
and it decides between an index rebuild or a reorga-
nization based on the degree of fragmentation.

I/O SUBSYSTEM
If you know that certain indexes are typically used together, for example, in JOINs or
WHERE clauses, it might be prudent to put them on a different physical disk with their
own disk controllers. This will allow a higher degree of parallelism and a correspond-
ing performance improvement. It may be worthwhile putting the most-frequently
used indexes on their own disks for similar reasons; a script later in this chapter, in
section 3.5, will identify these indexes.

 This applies to frequently used tables as well as indexes, and where possible, tables
that are used together should be placed on different disks.

COMPRESSION (2008)
SQL Server 2008 provides a facility to compress data, including data in indexes. By
default, indexes aren’t compressed when the underlying table is compressed; they
have to be done separately. Compression ratios of 40% or more are common, allowing
you to retrieve almost twice as much data per read operation.

 If data is compressed, you can retrieve more data per page you read, so the per-
formance of many queries should increase. You do need additional time to uncom-
press the data. You need to balance the positive aspect of retrieving more data per
page with the negative impact of the time taken to uncompress the data. Luckily a
GUI tool and associated stored procedures are provided that allow you to estimate

Figure 3.3 Output showing the
fragmentation percentage of
indexes
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 Index DMVs
the saving compression will provide. You can access the GUI tool from within SSMS
by right-clicking a table, selecting Storage, and then selecting Manage Compression.
You can use this tool to determine whether index compression is advantageous for
your indexes.

 Having discussed why indexes are important and factors that affect their impor-
tance, let’s now look at which indexes could significantly improve the query perfor-
mance but are missing.

3.2 Costly missing indexes
Indexes are typically the most important factor in identifying the relevant data rows
quickly. They’re used both for data retrieval and to identify data for subsequent modi-
fication. As much as an index has a big impact on quickly identifying rows of data, a
missing index can have a corresponding detrimental impact on performance.

 When SQL Server runs queries, it examines the query and tables/views and deter-
mines which indexes it would like to use. If these indexes are present, it typically uses
them. But if these indexes aren’t present, it makes a note of them with the cached
plan in internal data structures that you can view via the DMVs.

3.2.1 Finding the most important missing indexes

Indexes are a principal means of improving the performance of SQL queries. But for
various reasons, for example, changing systems, useful indexes may not always have
been created. Running the SQL query given in the following listing will identify the
top 20 indexes, ordered by impact (Total Cost), that are missing from your system.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 ROUND(s.avg_total_user_cost *
 s.avg_user_impact
 * (s.user_seeks + s.user_scans),0)
 AS [Total Cost]
 , d.[statement] AS [Table Name]
 , equality_columns
 , inequality_columns
 , included_columns
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s
 ON s.group_handle = g.index_group_handle

Example of impact of implementing a missing index
A missing index can have a huge effect on performance. I’ve seen an example in a
production system where a stored procedure was taking more than four hours to
run, but when the missing indexes were applied, it ran in under five minutes.

Listing 3.1 Identifying the most important missing indexes

Calculate total cost
of missing index

B

www.it-ebooks.info

http://www.it-ebooks.info/

63Costly missing indexes
INNER JOIN sys.dm_db_missing_index_details d
 ON d.index_handle = g.index_handle
ORDER BY [Total Cost] DESC

In the listing, you can see that three DMVs are involved in identifying missing indexes;
a brief description of each one is given in table 3.3.

The joining of these three DMVs provides you with enough information to fully
describe the missing indexes across all the databases on the server and assign an
importance weighting (called Total Cost) to their usefulness. There are various ways
of calculating the importance of an index. In this example, I combine the frequency
of index usage (user_seeks and user_scans) with the measures of query improvement
(avg_total_user_cost and avg_user_impact) B.

SQL Server Books Online defines the column avg_total_user_cost this way: Aver-
age cost of the user queries that could be reduced by the index in the group. Sim-
ilarly, avg_user_impact is defined: Average percentage benefit that user queries
could experience if this missing index group was implemented. The value means
that the query cost would on average drop by this percentage if this missing index
group was implemented. Combining these columns gives us a measure of expected
query improvement.

 The column user_seeks represents the number of SQL queries that would have
used the index to seek data; it’s not the number of times the index has been accessed.
Similarly, user_scans represents the number of SQL queries that would have used the
index to scan for data.

 The results are ordered by the calculated total cost column, in descending order,
so that the most important indexes are listed first. The T-SQL ROUND function is used
to ensure the value of the total cost column is rounded up to remove any decimal
places. The TOP command is used to restrict the output to the 20 most important
missing indexes.

 The column named TableName identifies the database/schema and table the
index relates to. The columns equality_columns and inequality_columns contain

Table 3.3 DMVs used to find missing indexes

DMV Description

sys.dm_db_missing_index_details Contains details of the database/schema/table
the missing index relates to, together with how the
index usage has been identified in queries (such as
equality/inequality).

sys.dm_db_missing_index_group_stats Contains details of how often the index would have
been used, how it would be used (seek or scan), and
a measure of the effectiveness of the index.

sys.dm_db_missing_index_groups This is a linking DMV, linking the previous two
DMVs together.
www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 Index DMVs
the names of columns that should be used to create the index. The column named
included_columns identifies the columns that should be defined as included col-
umns on the index.

 An example of the type of output for this query is shown in figure 3.4.

3.2.2 The impact of missing indexes

Although you can use the output from the missing-indexes script to create the missing
indexes, and perhaps automate this, a word of caution is needed. The output doesn’t
take into account the potentially conflicting requirements of all the queries that run
against the identified tables. The output relates to individual queries rather than their
sum cumulative actions. With this in mind, you need to balance the detrimental
effects that any index may have on any updates (INSERT/UPDATE/DELETE) with the
improved performance an index can bring. When you update a table’s data, any rele-
vant index will also need to be updated. This can add to the duration of the query,
transaction length, and locks, leading to potential problems with blocking (and associ-
ated client timeouts).

 You’ll need to test to determine whether the added missing indexes, on balance,
add value. The Database Tuning Advisor (DTA) is a good tool for amalgamating the
sum total effects of all the queries, to determine if an index should be added. That
said, on many occasions I’ve found the DTA to be both relatively conservative in its rec-
ommendations and time consuming to run.

 The sys.dm_db_missing_index_group_stats DMV includes data for both user and
system usage. System relates to administration-like queries, whereas user queries relate
to application queries. Because we tend to be more interested in our own user que-
ries, we ignore the system usage details in our script.

 It’s possible to create a DMV snapshot of queries (relating to duration, CPU, I/O,
and the like) and another relating to missing indexes. (How to create DMV snapshots
is shown in chapter 2, “Common patterns.”) It should then be possible to correlate

Figure 3.4 Output showing the most important missing indexes
www.it-ebooks.info

http://www.it-ebooks.info/

65Unused indexes
the two snapshots, apply the missing indexes, and rerun the query to determine if the
added indexes have improved performance.

 You need to be careful with missing indexes that have a large number of columns
in the included_columns column; this may be because someone is accessing the table
via a SELECT * FROM tableName query. This in itself may be interesting, because it
suggests the user may not know what data columns they want, or maybe they’re being
lazy in specifying the columns they want.

 It’s probably better, initially, to focus on those missing indexes that have a NULL
value in the included_columns column. If the inequality_columns column is popu-
lated, it might be worthwhile searching your code base, which represents all your SQL
queries taken as a whole, for the column identified. Often it’s a good indicator of a
SQL query that can be written more efficiently. For example, instead of specifying the
column is not equal to something, it may be better to rewrite the query so it contains
just the possible values.

 If you want to focus your performance improvements on a given database, schema,
or table, you could amend the missing-indexes query to look only at a given database,
schema, or table you’re interested in. For example, to retrieve missing index informa-
tion for a database/schema/table called ‘[Paris].[dbo].[Component]’, you could add
the following to the query:

WHERE [statement] = '[Paris].[dbo].[Component]'

It’s also possible to search the cached plans for missing indexes. I’ll show a script for
this later in the chapter on improving poor query performance, in section 5.2 (“Find-
ing queries that have missing indexes”). Looking at these cached plans before and
after the indexes have been implemented should provide valuable insight into the
effectiveness of the index. In addition, when you open the cached plan in SSMS 2008,
you can easily extract the missing index definition.

 In chapter 10 I’ll provide a script that automatically creates the SQL to build (and
optionally implement) these missing indexes.

 Having looked at useful indexes that are missing, we’ll now look at the opposite
view, indexes that exist but aren’t being used at all for data retrieval.

3.3 Unused indexes
Indexes are great for improving the performance of retrieval-based queries. In addi-
tion, if an update query has a WHERE clause or a JOIN condition, it may use an
index to identify the subset of rows to update, and this will improve the perfor-
mance of the query.

 But indexes can have a detrimental effect on updates. This occurs when a table is
updated (via UPDATE, DELETE, or INSERT) and the index isn’t used. In these cases,
the index can have a detrimental effect on query performance, because the index may
need to be updated too. This will add to the query duration, length of transaction,
and locks, leading to blocking and potential client timeouts.
www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 Index DMVs
 In essence, costly unused indexes force SQL Server to do unnecessary work. In
addition to queries taking longer to execute, administrative functions like backups
and restores will take longer to complete, and there’s an additional cost associated
with the storage of unnecessary data.

3.3.1 Finding the most-costly unused indexes

Superfluous indexes have a detrimental effect on the performance of your SQL que-
ries, because they cause SQL Server to do unnecessary work. Running the SQL script
given in the next listing will identify the top 20 most-costly unused indexes, ordered by
the number of updates that have been applied to them.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , s.user_updates
 , s.system_seeks + s.system_scans + s.system_lookups
 AS [System usage]
INTO #TempUnusedIndexes
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE 1=2

EXEC sp_MSForEachDB 'USE [?];
INSERT INTO #TempUnusedIndexes
SELECT TOP 20
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , s.user_updates
 , s.system_seeks + s.system_scans + s.system_lookups
 AS [System usage]
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE s.database_id = DB_ID()
AND OBJECTPROPERTY(s.[object_id], ''IsMsShipped'') = 0
AND s.user_seeks = 0
 AND s.user_scans = 0
 AND s.user_lookups = 0
AND i.name IS NOT NULL
ORDER BY s.user_updates DESC'

SELECT TOP 20 * FROM #TempUnusedIndexes ORDER BY [user_updates] DESC

DROP TABLE #TempUnusedIndexes

Listing 3.2 The most-costly unused indexes

Temp table to
hold resultsB

Loop around
all databasesC

Identify most-costly
unused indexes

D

www.it-ebooks.info

http://www.it-ebooks.info/

67Unused indexes
Here you can see that a single DMV and two system tables are involved in identifying
the most-costly unused indexes; a brief description of each is shown in table 3.4.

By joining the DMV and two system tables, we have enough information to identify
the most-costly unused indexes across all the databases on the server. The DMV and the
sys.indexes system table are joined on their common key columns: object_id and
index_id. The system tables sys.objects and sys.indexes are joined on the object_id
key. The system table sys.objects is used to provide information about the schema the
index relates to.

 We use a common pattern to create the temporary table to hold the transient
results. Again, we use another common pattern to loop over all the databases on the
server. For more detail on these common patterns, see chapter 2.

 The first part of the script creates an empty temporary table (named #Temp-
UnusedIndexes) with the required structure of column names and data types B. We
use the Microsoft-supplied stored procedure sp_MSForEachDB to execute a query on
each database on the server C. The query we execute selects the 20 most-costly
unused indexes on each database D. We put the results of each execution into the
temporary table. Finally, we select the top 20 most-costly indexes across all the data-
bases on the server.

 The query we execute on each database identifies the top 20 most-costly unused
indexes by selecting those indexes that haven’t been used in any user queries to
retrieve data (there are no seeks, scans, or lookups) but have been updated when the
relevant columns in the underlying table have been updated. The results are sorted by
the number of updates that user queries have caused to be applied to the index, in
descending order.

NOTE We ignore any indexes whose name column is set to NULL. This is
because they aren’t indexes; they’re heaps. Similarly, because we’re inter-
ested in only our own user-created indexes, we filter out any indexes that
relate to tables created by the SQL Server installation process (the column
IsMsShipped has a value of 1). We include the calculated sum of any system
usage columns in the output; this will allow us to determine if the index is
necessary for any system processing and if further investigation is needed.

Sample output for this query is shown in figure 3.5.

Table 3.4 DMV/system tables to identify the most-costly unused indexes

DMV/tables Description

sys.dm_db_index_usage_stats Contains details of the different types of index operations, for
example, number of updates by user queries

sys.indexes Contains details for each index, for example, name and type

sys.objects Contains details for each object, for example, schema name
www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3 Index DMVs
3.3.2 The impact of unused indexes

There are various reasons why you might have indexes that aren’t used for data
retrieval. These include changing application functionality, changing database usage,
inexperienced developers, and the lack of a project follow-up phase.

 Often when a project starts, there’s limited knowledge about the queries you want
to run on the database and the indexes you need to fulfill these queries. Indexes may
be created with a best-guess approach. As the project progresses, the needs of the proj-
ect become more fully understood, and the queries and indexes become more stable.
Indexes that were created early on may no longer be appropriate but are forgotten
about or ignored, resulting in potential impedance on query performance.

 Similarly, an application may change significantly, running new queries and requir-
ing new indexes, but the old indexes are left in place. Perhaps a key player in the
development team leaves, and the remaining developers are unsure of query and
index usage. Maybe a combination of increased data volume and a change in the type
of data results in another index being used for data retrieval.

 For a variety of reasons, some projects are implemented by inexperienced staff.
They may implement indexes without sufficient thought as to the queries that run
against the tables. For example, they might assume an index is being used but have
insufficient knowledge to inspect the cached plans, which show the index isn’t being
used (maybe a table scan is being used or a data type conversion is taking place; both
can result in unused indexes).

 All these reasons could potentially produce costly unused indexes. Because you
know that costly unused indexes have a detrimental impact on performance,
you should try to remove them where possible. I’d suggest running the query given
in the previous script (listing 3.2) as part of the user acceptance testing plan and
also when changes are made to the application, in order to determine if indexes
are still required. It would also be prudent to run the script as a regular part of
any database housekeeping, to ensure you identify any potential superfluous
indexes and to remove them.

Figure 3.5 Output showing the most-costly unused indexes
www.it-ebooks.info

http://www.it-ebooks.info/

69High-maintenance indexes
If you want to focus your performance improvements on a given database, schema, or
table, you could amend the most-costly indexes script to look only at a given database,
schema, or table you’re interested in.

 A note of caution is needed here. The DMVs contain data that has accumulated
since the last SQL Server restart. You need to ensure that you have enough data, from
all the queries that have run on the SQL Server, to ensure the indexes aren’t used for
data retrieval.

 The DMV sys.dm_db_index_usage_stats contains entries only for indexes that have
been used. Unused indexes are ones that have never been updated or used for
retrieval. Although these unused indexes do no real harm, removing these indexes
will simplify the schema. An OUTER JOIN between sys.indexes and sys.dm_db_index_
usage_stats will identify these indexes. A script later in this chapter (see section 3.9)
will identify these indexes.

3.4 High-maintenance indexes
High-maintenance indexes are indexes that are rarely used to retrieve data for user que-
ries but may be updated when the underlying table’s data is modified. In many ways
they’re similar to the most-costly unused indexes; they’re relatively expensive and can
have a negative effect on query performance, potentially increasing blocking and cli-
ent timeouts.

3.4.1 Finding the top high-maintenance indexes

High-maintenance indexes, like unused indexes, can have a detrimental impact on
SQL performance because they cause SQL Server to perform unnecessary work.
Running the SQL script given in the following listing will identify the top 20 high-
maintenance indexes, ordered by maintenance cost.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , (s.user_updates) AS [update usage]
 , (s.user_seeks + s.user_scans + s.user_lookups)
 AS [Retrieval usage]

Removing indexes
Since SQL Server 2005, it has been possible to disable indexes rather than delete
them. Disabling the index removes the index and its data but allows you to keep
the definition of the index tied with its table, without having the complication of
storing the definition elsewhere, should you wish to reapply it at a later date.

Listing 3.3 The top high-maintenance indexes

Temp table to
hold resultsB
www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3 Index DMVs
 , (s.user_updates) -
 (s.user_seeks + s.user_scans + s.user_lookups) AS [Maintenance cost]
 , s.system_seeks + s.system_scans + s.system_lookups AS [System usage]
 , s.last_user_seek
 , s.last_user_scan
 , s.last_user_lookup
INTO #TempMaintenanceCost
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE 1=2

EXEC sp_MSForEachDB 'USE [?];
INSERT INTO #TempMaintenanceCost
SELECT TOP 20
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , (s.user_updates) AS [update usage]
 , (s.user_seeks + s.user_scans + s.user_lookups)
 AS [Retrieval usage]
 , (s.user_updates) -
(s.user_seeks + user_scans +
 s.user_lookups) AS [Maintenance cost]
 , s.system_seeks + s.system_scans + s.system_lookups AS [System usage]
 , s.last_user_seek
 , s.last_user_scan
 , s.last_user_lookup
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE s.database_id = DB_ID()
 AND i.name IS NOT NULL
 AND OBJECTPROPERTY(s.[object_id], ''IsMsShipped'') = 0
 AND (s.user_seeks + s.user_scans + s.user_lookups) > 0
ORDER BY [Maintenance cost] DESC'

SELECT top 20 * FROM #TempMaintenanceCost ORDER BY [Maintenance cost] DESC

DROP TABLE #TempMaintenanceCost

In the script a single DMV and two system tables are involved in identifying the most-
unused indexes. Table 3.5 gives a brief description of each.

Table 3.5 DMVs/system tables to identify the top high-maintenance indexes

DMV/table Description

sys.dm_db_index_usage_stats Contains details of the different types of index operations, for
example, number of updates by user queries

sys.indexes Contains details for each index, for example, name and type

sys.objects Contains details for each object, for example, schema name

Loop around
all databasesC

Identify top
high-maintenance
indexes

D

www.it-ebooks.info

http://www.it-ebooks.info/

71High-maintenance indexes
The joining of the DMV and system tables provides us with enough information to
identify the top high-maintenance indexes across all the databases on the server. The
DMV and the sys.indexes system table are joined on their common key columns,
object_id and index_id. The system tables sys.objects and sys.indexes are joined on
the object_id key. The system table sys.objects is used to provide information about
the schema the index relates to.

 We use a common pattern to create the temporary table to hold the transient
results. Then we use another common pattern to loop over all the databases on the
server. For more detail on these common patterns, see chapter 2.

 The first part of the script creates an empty temporary table (named #Temp-
MaintenanceCost) with the required structure of column names and data types B.
We use the Microsoft-supplied stored procedure, sp_MSForEachDB, to execute a
query on each database on the server C. The query we execute selects the top 20
high-maintenance indexes on each database D. We put the results of each execution
into the temporary table. Finally we select the top 20 high-maintenance indexes across
all the databases on the server.

 The query we execute on each database identifies the top 20 high-maintenance
indexes by subtracting the retrieval usage from the update usage. The update usage
is given by the column user_updates, and the retrieval usage is calculated as the sum
of the various user index access types (user_seeks + user_scans + user_lookups). The
dates of the last seek, scan, and lookup are also included. These can be used to
determine if the index lookup was a long time ago, increasing the probability that it
can be disabled or removed. The results are sorted by the maintenance cost in
descending order.

NOTE We ignore any indexes whose name column is set to NULL. This is
because they aren’t indexes; they’re heaps. Similarly, we’re interested in only
our own user-created indexes, so we filter out any indexes that relate to tables
created by the SQL Server installation process (the column IsMsShipped has a
value of 1).

Because we’re interested in indexes that have at least some usage, we exclude indexes
that haven’t been used for data retrieval (we’ve already identified these, in the most-
costly unused indexes script). We include the calculated sum of any system usage col-
umns in the output; this will allow us to determine if the index is necessary for any
system processing and if further investigation is needed.

 Figure 3.6 shows an example of the type of output for this query.

3.4.2 The impact of high-maintenance indexes

In this section I’ve identified indexes that are used relatively infrequently compared
to the number of index updates (which reflect updates to the underlying table’s
data). What you need to determine now is whether the cost of the index is too
expensive compared with its usage and whether the index should be removed. If the
www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 3 Index DMVs
index is required to obtain a subset of the underlying data, it may be advisable to
create a filtered index.

 If you examine the column retrieval_usage, you can see how often the index is
used. A small value might reflect a rare ad hoc query or even a query that previously
used the index but no longer does, perhaps because of changes in the volume and/or
type of data. You could use DMV snapshots here to determine if the indexes are still
used for data retrieval. For more information on the use of DMV snapshots, please see
the DMV snapshot section in chapter 2.

 If you want to focus your performance improvements on a given database, schema,
or table, you could amend the top high-maintenance indexes script to look only at a
given database, schema, or table you’re interested in.

 It might be sensible to run the script regularly and see if its retrieval usage
changes. If it doesn’t, this suggests the index is no longer being used, and the index is
eligible for removal.

3.5 Most-frequently used indexes
If you know which indexes are used most often, you can target these indexes for fur-
ther optimization. This should have a positive impact on the performance of those
queries that use these indexes. These index optimizations include ensuring that the
index statistics are up to date and have a good sampling percentage, the fill factor is
optimal for the type of index usage, and logical fragmentation is low.

3.5.1 Finding the most-used indexes

Optimizing the indexes that are used most often will have a proportionally better
impact on SQL query performance than optimizing other indexes. Running the SQL
script given in the following listing will identify the top 20 most-used indexes, ordered
by usage.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME() AS DatabaseName

Listing 3.4 The most-used indexes

Figure 3.6 Output showing the top high-maintenance indexes

Temp table to
hold resultsB
www.it-ebooks.info

http://www.it-ebooks.info/

73Most-frequently used indexes
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , (s.user_seeks + s.user_scans + s.user_lookups) AS [Usage]
 , s.user_updates
 , i.fill_factor
INTO #TempUsage
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE 1=2

EXEC sp_MSForEachDB 'USE [?];
INSERT INTO #TempUsage
SELECT TOP 20
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , (s.user_seeks + s.user_scans + s.user_lookups) AS [Usage]
 , s.user_updates
 , i.fill_factor
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE s.database_id = DB_ID()
 AND i.name IS NOT NULL
 AND OBJECTPROPERTY(s.[object_id], ''IsMsShipped'') = 0
ORDER BY [Usage] DESC'

SELECT TOP 20 * FROM #TempUsage ORDER BY [Usage] DESC

DROP TABLE #TempUsage

A single DMV and two system tables are used to identify the most-used indexes. A brief
description of each is given in table 3.6.

Joining the DMV and two system tables provides us with enough information to iden-
tify the most-used indexes across all the databases on the server. The DMV and the
sys.indexes system table are joined on their common key columns, object_id and
index_id. The system tables sys.objects and sys.indexes are joined on the object_id key.

Table 3.6 DMV/system tables to identify the most-used indexes

DMV/tables Description

sys.dm_db_index_usage_stats Contains details of the different types of index operations, for
example, number of updates by user queries

sys.indexes Contains details for ea.ch index, for example, name and type

sys.objects Contains details for each object, for example, schema name

Loop around
all databasesC

Identify most-used
indexes

D

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3 Index DMVs
The system table sys.objects is used to provide information about the schema the
index relates to.

 We use a common pattern to create the temporary table to hold the transient
results. We use another common pattern to loop over all the databases on the server.
For more details on these common patterns, see chapter 2.

 The first part of the script creates an empty temporary table (named #TempUsage)
with the required structure of column names and data types B. We use the Microsoft-
supplied stored procedure, sp_MSForEachDB, to execute a query on each database on
the server C. The query we execute selects the 20 most-used indexes on each data-
base D. We put the results of each execution into the temporary table. Finally, we
select the top 20 most-used indexes across all the databases on the server.

 The query we execute on each database identifies the top 20 most-used indexes by
calculating the sum of all the user index access counts (user_seeks + user_scans +
user_lookups) and sorting by this calculated sum in descending order. We also report
on the index’s fill_factor value; this will help us decide if we’re using the appropriate
fill factor in light of the amount of index data being read/updated.

 Note that we ignore any heaps because they aren’t indexes. Also, we’re interested
in only user-created indexes.

 An example of the type of output for this query is shown in figure 3.7.

3.5.2 The importance of the most-used indexes

Knowing the most-commonly used indexes allows you to target your optimizations,
confident in the knowledge that your changes should have a positive effect on the per-
formance of those queries that use these most-popular indexes.

 Indexes are used for data retrieval or to identify a subset of rows to modify. For the
identified most-used indexes, you should ensure that the index’s statistics are up to
date and have a good sampling percentage. This should ensure that any queries that
use the index have access to valid information about the probability of data values
based on a column’s data values. This is especially important for large tables where the
automatic updating of statistics information may be suboptimal.

Figure 3.7 Output showing the most-used indexes
www.it-ebooks.info

http://www.it-ebooks.info/

75Fragmented indexes
Similarly, you should look at the index’s fill factor with a view to optimizing it, by
ensuring you can get the most data per read, taking into account the number of
updates the index is involved in. This should be easy to apply to tables and indexes
that are relatively static, such as currency or country tables.

 You might also consider placing the indexes on their own disk drive with their own
disk controller, allowing queries to take advantage of concurrent access. If you’re
using SQL Server 2008, you might also consider these indexes for compression,
because this will allow you to obtain more data for each read.

 If you want to focus your performance improvements on a given database, schema,
or table, you could amend the most-used-indexes query to look only at a given data-
base, schema, or table you’re interested in.

3.6 Fragmented indexes
Fragmentation relates to index entries that are out of sequence. For queries that
access data sequentially, typically index scans, additional work is needed to retrieve
the index’s data. This additional work can result in longer-running queries, with
potentially more blocking and client timeouts. Where possible, you should remove
this fragmentation so you don’t perform any unnecessary work.

3.6.1 Finding the most-fragmented indexes

The crux of this script is the DMV sys.dm_db_index_physical_stats. This DMV accepts
various parameters, allowing fragmentation to be reported on at various levels of gran-
ularity, such as for a given database, table, or index. Under the hood, this DMV calls
database console commands (DBCC), which can take a long time to execute. Consider
this and its impact on resources when running this script. On my 4.5 terabyte data-
base, with 128 GB of RAM, 16 CPUs, 600 indexes, and containing 255 tables, this script
took more than an hour to execute.

 The script we use to identify the most-fragmented indexes is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME() AS DatbaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , ROUND(s.avg_fragmentation_in_percent,2) AS [Fragmentation %]
INTO #TempFragmentation
FROM sys.dm_db_index_physical_stats(db_id(),null, null, null, null) s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE 1=2

EXEC sp_MSForEachDB 'USE [?];
INSERT INTO #TempFragmentation

Listing 3.5 The most-fragmented indexes

Temp table to
hold resultsB

Loop around
all databases

C

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 Index DMVs
SELECT TOP 20
 DB_NAME() AS DatbaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , ROUND(s.avg_fragmentation_in_percent,2) AS [Fragmentation %]
FROM sys.dm_db_index_physical_stats(db_id(),null, null, null, null) s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE s.database_id = DB_ID()
 AND i.name IS NOT NULL
 AND OBJECTPROPERTY(s.[object_id], ''IsMsShipped'') = 0
ORDER BY [Fragmentation %] DESC'

SELECT top 20 * FROM #TempFragmentation ORDER BY [Fragmentation %] DESC

DROP TABLE #TempFragmentation

In the listing, a single DMV and two system tables are involved in identifying the most-
fragmented indexes; a brief description of each is given in table 3.7.

By joining the DMV and system tables, we have enough information to identify the
most-fragmented indexes across all the databases on the server. The DMV and sys-
tem tables are joined on their common key columns, object_id and index_id. The
system tables sys.objects and sys.indexes are joined on the object_id key. The sys-
tem table sys.objects is used to provide information about the schema the index
relates to.

 Again, we use a common pattern to create the temporary table to hold the tran-
sient results and another common pattern to loop over all the databases on the server.
For more details on these common patterns, see chapter 2.

 The first part of the script creates an empty temporary table (named #Temp-
Fragmentation) with the required structure of column names and data types B. We
use the Microsoft-supplied stored procedure, sp_MSForEachDB, to execute a query on
each database on the server C. The query we execute selects the 20 most-fragmented
indexes on each database D. We put the results of each execution into the temporary
table. Finally, we select the top 20 most-fragmented indexes across all the databases on
the server.

Table 3.7 DMV/system tables to identify the most-fragmented indexes

DMV/tables Description

sys.dm_db_index_physical_stats Contains size and fragmentation information for the data and
indexes for tables or views

sys.indexes Contains details for each index, for example, name and type

sys.objects Contains details for each object, for example, schema name

Identify
most-fragmented
indexes

D

www.it-ebooks.info

http://www.it-ebooks.info/

77Fragmented indexes
The query we execute on each database identifies the top 20 most-fragmented indexes
using the column avg_fragmentation_in_percent and sorts by this column in descend-
ing order.

 Note that we ignore any heaps because they aren’t indexes. In addition, we’re
interested in only user-created indexes.

 Figure 3.8 contains an example of the type of output for this query.

3.6.2 The impact of fragmented indexes

Having a low level of fragmentation is especially important for those queries that
involve ranges, which retrieve data between two points. Fragmentation results in addi-
tional work being done. Where possible, you should remove fragmentation.

 Typically, Microsoft recommends that indexes that have a fragmentation percent-
age in excess of 30% be rebuilt. Similarly, indexes with a fragmentation percentage
between 10% and 30% should be reorganized.

 It’s possible to rebuild/reorganize indexes individually from within SSMS, by right-
clicking the relevant index and selecting Rebuild. Although this is okay for selected
indexes, for a more encompassing approach you should create a script and run the
output automatically. You should run this script at regular intervals as part of the regu-
lar database housekeeping jobs. Note that you can perform these operations when the
database is online, but it may have a negative impact on performance, so be sure to
test a small change before it’s applied more aggressively.

 In chapter 10 I’ll provide a script that automatically defragments indexes in an
intelligent manner. The script defragments only the indexes whose data has frag-
mented significantly, and it decides between an index rebuild or a reorganization
based on the degree of fragmentation.

 It’s possible to concentrate your efforts on a given database, table, or index by sup-
plying relevant parameters to the sys.dm_db_index_physical_stats DMV.

Figure 3.8 Output showing the most-fragmented indexes
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 3 Index DMVs
 We’ll now look at which specific indexes are used by a given routine. This provides
you with an opportunity to pre-optimize before the query is run.

3.7 Indexes used by a given routine
When you run your SQL queries or batches, some queries are more important than
others. If you know which queries (stored procedure or a batch of one or more SQL
statements) are your important ones and need to perform optimally, you can pre-
optimize the indexes these queries use. If you can identify which indexes are used by a
given batch of SQL, you can target these indexes for optimization. This should give
you better performance where and when it matters.

 When you run a SQL query, information about which indexes it uses and how it
uses them (for example, updates, seeks, scans, or lookups) is stored. In addition,
information about the number of rows affected by the running code is recorded.
Using this information, you can target your performance improvements to those spe-
cific indexes, leading to better-performing code.

 The purpose of the script described in this section is to identify the name and type
of usage of indexes a SQL query uses and then suggest ways in which these targeted
indexes can be improved.

 Indexes are one of the main tools for improving SQL query performance. But
information associated with indexes can become stale over time. Such information
includes statistics, degree of logical fragmentation, and the fill factor. We’ll discuss
how these can be improved later in this section, but first we need to create the script
to identify which indexes are used by a given SQL query.

3.7.1 Finding the indexes used by a given routine

If you know which indexes are used by a given routine, you can pre-optimize these
indexes before the next time the routine is run, ensuring optimal performance. The
script we use to identify the indexes used by a given routine is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
SchemaName = ss.name
 , TableName = st.name
 , IndexName = ISNULL(si.name, '')
 , IndexType = si.type_desc
 , user_updates = ISNULL(ius.user_updates, 0)
 , user_seeks = ISNULL(ius.user_seeks, 0)
 , user_scans = ISNULL(ius.user_scans, 0)
 , user_lookups = ISNULL(ius.user_lookups, 0)
 , ssi.rowcnt
 , ssi.rowmodctr
 , si.fill_factor
INTO #IndexStatsPre
FROM sys.dm_db_index_usage_stats ius

Listing 3.6 Identifying indexes used by a given routine

Get pre-index
counter valuesB
www.it-ebooks.info

http://www.it-ebooks.info/

79Indexes used by a given routine
RIGHT OUTER JOIN sys.indexes si ON ius.[object_id] = si.[object_id]
 AND ius.index_id = si.index_id
INNER JOIN sys.sysindexes ssi ON si.object_id = ssi.id
 AND si.name = ssi.name
INNER JOIN sys.tables st ON st.[object_id] = si.[object_id]
INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
WHERE ius.database_id = DB_ID()
 AND OBJECTPROPERTY(ius.[object_id], 'IsMsShipped') = 0

SELECT COB, COUNT(*) FROM dbo.request GROUP BY COB

SELECT
SchemaName = ss.name
 , TableName = st.name
 , IndexName = ISNULL(si.name, '')
 , IndexType = si.type_desc
 , user_updates = ISNULL(ius.user_updates, 0)
 , user_seeks = ISNULL(ius.user_seeks, 0)
 , user_scans = ISNULL(ius.user_scans, 0)
 , user_lookups = ISNULL(ius.user_lookups, 0)
 , ssi.rowcnt
 , ssi.rowmodctr
 , si.fill_factor
INTO #IndexStatsPost
FROM sys.dm_db_index_usage_stats ius
RIGHT OUTER JOIN sys.indexes si ON ius.[object_id] = si.[object_id]
 AND ius.index_id = si.index_id
INNER JOIN sys.sysindexes ssi ON si.object_id = ssi.id
 AND si.name = ssi.name
INNER JOIN sys.tables st ON st.[object_id] = si.[object_id]
INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
WHERE ius.database_id = DB_ID()
 AND OBJECTPROPERTY(ius.[object_id], 'IsMsShipped') = 0

SELECT
DB_NAME() AS DatabaseName
 , po.[SchemaName]
 , po.[TableName]
 , po.[IndexName]
 , po.[IndexType]
 , po.user_updates - ISNULL(pr.user_updates, 0) AS [User Updates]
 , po.user_seeks - ISNULL(pr.user_seeks, 0) AS [User Seeks]
 , po.user_scans - ISNULL(pr.user_scans, 0) AS [User Scans]
 , po.user_lookups - ISNULL(pr.user_lookups , 0) AS [User Lookups]
 , po.rowcnt - pr.rowcnt AS [Rows Inserted]
 , po.rowmodctr - pr.rowmodctr AS [Updates I/U/D]
 , po.fill_factor
FROM #IndexStatsPost po LEFT OUTER JOIN #IndexStatsPre pr
 ON pr.SchemaName = po.SchemaName
 AND pr.TableName = po.TableName
 AND pr.IndexName = po.IndexName
 AND pr.IndexType = po.IndexType
WHERE ISNULL(pr.user_updates, 0) != po.user_updates
OR ISNULL(pr.user_seeks, 0) != po.user_seeks
OR ISNULL(pr.user_scans, 0) != po.user_scans

Run routine
or native SQL

C

Get post-index
counter valuesD

Determine which
index counters
have changedE
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 3 Index DMVs
OR ISNULL(pr.user_lookups, 0) != po.user_lookups
ORDER BY po.[SchemaName], po.[TableName], po.[IndexName];

DROP TABLE #IndexStatsPre
DROP TABLE #IndexStatsPost

Here you can see that a single DMV and four system tables are involved in identifying
the indexes used by a given routine; a brief description of each is given in table 3.8.

By joining the DMV with the system tables, we have enough information to identify the
indexes used by a given routine and how they’re used. The DMV joins to the system
table sys.indexes on their common key columns, object_id and index_id. The other
system tables typically provide descriptive information.

 The first part of the script stores the current value of various index counters into
a temporary table (named #IndexStatsPre) B. We then run the SQL query or rou-
tine about which we want to discover indexes usage C. Next, we store the new value
of various index counters into another temporary table (named #IndexStatsPost) D.
Finally, we compare the temporary tables to determine which indexes have been
used, how they’ve been used—for example, scan, seek, or lookup—and how much
they have been used E. The results are sorted by schema name, table name, and
index name.

 The User column usage counts relate to the number of times the index was
accessed by the running SQL query, not the number of rows within the index that
were accessed. As an example, if a SQL query updates 10 rows (that are part of an
index), it will have a User Updates value of 1 (because one UPDATE statement has
been run) and will have an Update I/U/D value of 10 (because 10 rows have been
modified—inserted, updated, or deleted) if the column updated is the leading col-
umn of the index. The Rows Inserted column will have a value of 0 because the num-
ber of rows hasn’t changed.

 Depending on how the query uses the index, it updates the relevant usage coun-
ters. A seek is a keyed access and is typically the most efficient method of retrieving a
small number of selective rows of data. A scan occurs when an index is examined to

Table 3.8 DMV/system tables to identify the index usage

DMV/tables Description

sys.dm_db_index_usage_stats Contains details of the different types of index operations, for
example, number of updates by user queries

sys.indexes Contains details for each index, for example, name and type

sys.sysindexes Contains details of row counts and row changes (since last
update statistics run)

sys.tables Contains details of table objects, for example, name

sys.schemas Contains details of schema objects, for example, name
www.it-ebooks.info

http://www.it-ebooks.info/

81Indexes used by a given routine
retrieve a range of rows. A lookup occurs when this index is used to look up data in
another index.

 The WHERE clause ensures only nonsystem indexes in the current database are
examined. The results are sorted by schema name, table name, and then index name.

NOTE When determining which indexes have been used, we use a RIGHT
OUTER JOIN between the DMV sys.dm_db_index_usage_stats and the system
table sys.indexes; this is necessary because the index may not have been used
since the last reboot and may not be present in the DMV. Because of this,
when you compare the temporary tables, you need to take into account any
potential NULL values.

In addition, in the final step, there is a LEFT OUTER JOIN when calculating which
indexes have changed their counter values. This is needed because indexes that may
have been used by the routine may not have been used before.

 Figure 3.9 shows sample output for this type of query.

3.7.2 The importance of knowing which indexes are used

This script allows you to determine which indexes are used, how they’re used, and the
number of rows affected when a given stored procedure or batch of SQL code is run.
This information can be useful in targeting improvements to your T-SQL with a view to
improving its performance.

 Each index has a statistics object associated with it. This object includes infor-
mation about the distribution and density of the index’s columns, which is used by
the optimizer to determine whether an index is used and how it’s used (seek, scan,
or lookup). For large tables, updating these statistics can be time consuming, so a
smaller sample of rows is typically taken. If you know the specific indexes involved
with a query, you can provide a greater sampling size and a better representation
of the data, in the same amount of time, compared with a blanket statistics update
for the table as a whole.

 Large tables have an additional problem concerning statistics. Typically, a
table’s statistics are updated (automatically) only when 20% of its rows change.
For large tables, this means their statistics can be stale for quite a while before
they’re updated. Using the previous targeted method of improvement should
help ensure that the relevant statistics are kept up to date, and this should help
improve query performance.

Figure 3.9 Output showing the indexes used by a given routine
www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 3 Index DMVs
Logical index fragmentation indicates the percentage of entries in the index that
are out of sequence. This isn’t the same as the page-fullness type of fragmentation.
Logical fragmentation has an impact on any order scans that use an index. Where
possible, you should remove this fragmentation. You can achieve this by rebuilding
or reorganizing the index. You can see the degree of fragmentation by examining
the DMV sys.dm_db_index_physical_stats. Typically, if an index has over 30% frag-
mentation, a rebuild is recommended; if it’s between 10% and 30%, a reorganiza-
tion is recommended.

 It’s also advisable to ensure that the degree of physical fragmentation isn’t
excessive, because this will result in greater I/O with a corresponding decrease
in performance.

 Fill factor describes the number of entries on the page. For an index that’s mostly
read-only, you’d want the page to be relatively full, so you can get more data per read.
Whereas for an index that has many update/inserts, you’d prefer a less-full page to
prevent fragmentation that could hurt performance. You can use the output from this
script to determine whether an index has mostly read access or not and then set the
fill factor accordingly.

 The type of index access can provide you with some interesting information. A
large number of user lookups could indicate that additional columns should be added
to the index via the INCLUDE keyword, because the index is being used to get data
from the underlying table. User scans sometimes are indicative of a missing index;
inspecting the underlying SQL query code will show whether a scan was intended or
whether a more appropriate index needs to be created.

 Indexes can cause updates to run more slowly. Because the updates may need to
be applied to both the table and its indexes, this can have a significant impact when
you make a large number of updates. If the indexes have many updates (see the
User Updates column in the output) but few or no reads (see the other User col-
umns), you can investigate whether you’d get better performance by removing the
index. In some cases, it may be advisable to disable the index during updating and
then enable it afterward. In essence, you should consider the combined total SQL
query code that runs on the underlying tables before you consider adding or remov-
ing indexes.

 If you know that certain indexes are used more than others, you might want to put
them on different physical disks; this should give better concurrent access and
improved data retrieval times. This is particularly relevant to indexes that are used
repeatedly to join the same tables.

NOTE If a table is relatively small, none of its indexes might be used. This is
because it’s cheaper for the optimizer to get the data directly via the table
rather than from an index.

You can also use this script to confirm that certain indexes aren’t being used by a
SQL query. Investigating why an index isn’t being used might result in the SQL query
www.it-ebooks.info

http://www.it-ebooks.info/

83Databases with most missing indexes
being rewritten or changing the index definition or even the deletion of an unneces-
sary index.

 It may be worthwhile running the Database Tuning Advisor on the SQL query to
ensure that the indexes you have are still appropriate or if additional ones should be
added. Additionally, the missing indexes script described earlier can be useful in
tracking down missing indexes.

 Sometimes the values in the Rows Inserted and Updates I/U/D columns may not
match what you might expect in the other User columns. This can have various causes
including the following:

■ For the Updates I/U/D column to be updated, the SQL query must change an
entry in an index where the leading column is updated.

■ The combined effect of updates/deletes/inserts needs to be considered.
■ If statistics are updated when the utility is run, the Rows Inserted and Updates

I/U/D columns get reset (sometimes leading to a negative value).
■ Although an update statement may run (so it shows up in the User Updates col-

umn), it may not update any rows of data (so it doesn’t show up in the Updates
I/U/D column).

■ A rolled-back transaction seems to affect the Rows Inserted and Updates I/U/D
columns, whereas a committed transaction may not.

It might be advisable to run the SQL query under investigation twice because if the
indexes haven’t been loaded before, they’ll give a NULL value in the Rows Inserted
and Updates I/U/D columns.

 A potential caveat of the method described is that it doesn’t limit the index changes
to only the SQL query under investigation. If any other code is running concurrently on
the same database, its index accesses will also be recorded. One way around this prob-
lem is by running the SQL query on a standalone database or at a time when you know
nothing else is running. That said, you can turn this caveat into an advantage because
you may want to know about all index access on a given database.

3.8 Databases with most missing indexes
It’s often the case that you have several different databases running on the same
server. A consequence of this is that no matter how optimal your individual database
may be, another database on the server, running suboptimally, may affect the server’s
resources, and this may impact the performance of your database. Remember, CPU,
memory, and tempdb are shared across all the databases on the server. Now that you
know about the importance of indexes on query performance, it makes sense to
report on those databases with the most missing indexes, because they may be indi-
rectly affecting the performance of your database.

 It should be possible to amend the other queries in this chapter to provide counts
of other aspects of indexing, to give you an indication of databases that perhaps need
further attention.
www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 3 Index DMVs
3.8.1 Finding which databases have the most missing indexes

Excessive I/O is often reported as a root cause of poor system performance; often this
relates to, and is exacerbated by, missing indexes. Identifying the databases that have
the most missing indexes should help alleviate this problem. Running the SQL query
given in the following listing will identify the databases with the most missing indexes,
ordered by the number of missing indexes.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME(database_id) AS DatabaseName
 , COUNT(*) AS [Missing Index Count]
FROM sys.dm_db_missing_index_details
GROUP BY DB_NAME(database_id)
ORDER BY [Missing Index Count] DESC

Here a single DMV is used to identify the databases with the most missing indexes; a
brief description of it is given in table 3.9.

The sole DMV sys.dm_db_missing_index_details
provides you with enough information to deter-
mine which databases are missing the most
indexes, across all the databases on the server.
The query counts the number of missing indexes
per database and sorts the results by the number
of missing indexes in descending order.

 An example of the type of output for this
query is shown in figure 3.10.

3.8.2 The importance of other databases

As mentioned earlier, your database may be highly optimized, but because you often
have multiple databases sharing the same server, a suboptimal database running on
the same server may impact the performance of the server and your database.

 Often, one thing leads to another. A database that has a high number of missing
indexes might also be indicative of a poorly designed database, undertaken by inex-
perienced staff, using poor-quality hardware. If this is the case, you could use the

Listing 3.7 The databases with the most missing indexes

Table 3.9 DMV to identify the databases with the most missing indexes

DMV Description

sys.dm_db_missing_index_details Contains details of the database/schema/table the missing
index relates to, together with how the index usage has been
identified in queries (for example, equality/inequality)

Figure 3.10 Output showing the
databases with the most missing
indexes
www.it-ebooks.info

http://www.it-ebooks.info/

85Completely unused indexes
databases with the most-missing-indexes script as an indicator of general database
quality and to identify those in need of further investigation.

3.9 Completely unused indexes
Earlier I presented a script that identified the most-costly unused indexes. These
indexes aren’t used for data retrieval, and they’re expensive because they may need to
be updated when the underlying table is updated. The script given here is different. It
identifies indexes that haven’t been used at all, neither for retrieval nor for update.
These indexes don’t have any effect on performance because they aren’t used. They
do, however, have an effect on the complexity of your database model, because you
have additional indexes to understand. This is unnecessary, and you should try to
remove them where possible.

3.9.1 Finding which indexes aren’t used at all

Unused indexes increase the complexity of your database model, resulting in longer
and more complex analysis when you undertake maintenance work. Running the fol-
lowing SQL script will identify all the indexes that are unused on your server instance.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME() AS DatbaseName
 , SCHEMA_NAME(O.Schema_ID) AS SchemaName
 , OBJECT_NAME(I.object_id) AS TableName
 , I.name AS IndexName
INTO #TempNeverUsedIndexes
FROM sys.indexes I INNER JOIN sys.objects O ON I.object_id = O.object_id
WHERE 1=2

EXEC sp_MSForEachDB 'USE [?];
INSERT INTO #TempNeverUsedIndexes
SELECT
 DB_NAME() AS DatbaseName
 , SCHEMA_NAME(O.Schema_ID) AS SchemaName
 , OBJECT_NAME(I.object_id) AS TableName
 , I.NAME AS IndexName
FROM sys.indexes I INNER JOIN sys.objects O ON I.object_id = O.object_id

A word of caution
The indexes identified as unused should be treated with caution. The algorithm
used here to determine if an index is unused compares what’s in the system table
sys.indexes with the DMV sys.dm_db_index_usage_stats. The latter has entries
only if a query accesses the index. It may be that the queries that would use these
indexes have not yet been run (since the last SQL Server reboot); perhaps they’re
run on a quarterly or annual basis.

Listing 3.8 Indexes that aren’t used at all

Temp table to
hold results

B

Loop around
all databasesC
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 3 Index DMVs
LEFT OUTER JOIN sys.dm_db_index_usage_stats S ON S.object_id = I.object_id
 AND I.index_id = S.index_id
 AND DATABASE_ID = DB_ID()
WHERE OBJECTPROPERTY(O.object_id,''IsMsShipped'') = 0
 AND I.name IS NOT NULL
 AND S.object_id IS NULL'

SELECT * FROM #TempNeverUsedIndexes
ORDER BY DatbaseName, SchemaName, TableName, IndexName

DROP TABLE #TempNeverUsedIndexes

In the listing, you can see that a single DMV and two system tables are involved in iden-
tifying the databases that are unused. They’re briefly described in table 3.10.

The first part of the script creates an empty temporary table (named #Temp-
NeverUsedIndexes) with the required structure of column names and data types B.
We use the Microsoft-supplied stored procedure, sp_MSForEachDB, to execute a
query on each database on the server C. The query we execute selects all the unused
indexes on each database. We put the results of each execution into the temporary
table. Finally, we select the unused indexes across all the databases on the server D.

 The DMV sys.dm_db_index_usage_stats is populated with details of any indexes
that have been used in running our queries. If an index has not been used, it’s not
present in this DMV. The system table sys.indexes contains details of all the indexes
present on a given database. The system table sys.objects is used to provide informa-
tion about the schema the index relates to. You can determine which indexes are
unused by comparing what’s in the system table sys.indexes but not in the DMV
sys.dm_db_index_usage_stats. We use the system table sys.objects to display the
schema name of the index. The results are sorted by database name, schema name,
table name, and index name.

NOTE When determining which indexes haven’t been used, there’s a LEFT
OUTER JOIN between the system table sys.indexes and the DMV sys.dm_
db_index_usage_stats. This is necessary because the index may not have been
used since the last reboot and may not be present in the DMV. Checking for a
NULL object_id in the DMV will ensure you obtain all the unused indexes.

Sample output for this query is shown in figure 3.11.

Table 3.10 DMV/tables to identify unused indexes

DMV/tables Description

sys.dm_db_index_usage_stats Contains details of the different types of index operations, for
example, number of updates by user queries

sys.indexes Contains details for each index, for example, name and type

sys.objects Contains details for each object, for example, schema name

Identify unused
indexes

D

www.it-ebooks.info

http://www.it-ebooks.info/

87Your statistics
3.9.2 The importance of unused indexes

The indexes identified as unused here should be treated with caution. It may be that
the queries that would use these indexes haven’t yet been run (since the last SQL
Server reboot) and don’t have an entry in the DMV sys.dm_db_index_usage_stats. As
the time since the last reboot increases and the amount of data in the DMV increases,
you can be more confident that the indexes aren’t required. As a compromise, you
could disable the identified used indexes, and if they subsequently appear in the list of
missing indexes, you could reinstate them.

 As noted earlier, these indexes haven’t been used for either retrieval or update, so
they have no effect on query performance. They do, however, have an effect on schema
complexity. For example, you need to take them into account when analyzing the
impact of changes. They result in unnecessary work and should be removed.

 In chapter 10, I’ll provide a script that automatically disables or deletes indexes
that aren’t used at all.

 One of the major factors that affects whether an index is used or not is the index’s
statistics; this is discussed next.

3.10 Your statistics
Queries typically use indexes for WHERE clauses and JOIN conditions. Whether or not
an index is used and how it’s used are typically determined by the statistics on the col-
umns in the index. If you know how often a given data value is likely to occur and its
distribution in relation to other data values, you can provide an estimate to the opti-
mizer that’s used to determine which indexes are used by queries.

 In many ways, statistical information is at least as important as the indexes it
relates to, and so you should ensure it’s up to date and representative of the under-
lying index data.

 Statistics are typically automatically updated when 20% of the rows in a table
have changed since the statistics were last updated. For small- to medium-size tables,
the frequency of that statistics update may be adequate. But for larger tables, this

Figure 3.11 Output showing indexes that aren’t used at all
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 3 Index DMVs
automatic update may be insufficient. I’ve experienced many occasions where a
query has taken many minutes to run only to be canceled because of its bad perfor-
mance. Updating the relevant statistics has allowed the same query to subsequently
run in a few seconds.

 Although this script doesn’t involve DMVs, I’ve included it here because knowledge
of the current state of index statistics can have a profound effect on the use of indexes
and the performance of SQL queries.

3.10.1 Finding the state of your statistics

Up-to-date statistics help ensure that the most appropriate index is chosen to obtain
the underlying data. They also help ensure that the correct index access mechanism is
chosen, for example, seek or lookup. Running the SQL script given in the following
listing will identify the current state of your statistics.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 ss.name AS SchemaName
 , st.name AS TableName
 , s.name AS IndexName
 , STATS_DATE(s.id,s.indid) AS 'Statistics Last Updated'
 , s.rowcnt AS 'Row Count'
 , s.rowmodctr AS 'Number Of Changes'
 , CAST((CAST(s.rowmodctr AS DECIMAL(28,8))/CAST(s.rowcnt AS

DECIMAL(28,2)) * 100.0)
 AS DECIMAL(28,2)) AS '% Rows Changed'
FROM sys.sysindexes s
INNER JOIN sys.tables st ON st.[object_id] = s.[id]
INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
WHERE s.id > 100
 AND s.indid > 0
 AND s.rowcnt >= 500
ORDER BY SchemaName, TableName, IndexName

In the listing, you can see that three system tables are involved in identifying the cur-
rent state of index statistics; a brief description of each is given in table 3.11.

Listing 3.9 What is the state of your statistics?

Table 3.11 The state of your statistics

Tables Description

sys.indexes Contains details for each index, for example, name, type, row
count, number of rows changed since statistics last updated

sys.tables Contains table information, for example, name

sys.schemas Contains details of schema objects, for example, name
www.it-ebooks.info

http://www.it-ebooks.info/

89Your statistics
The joining of the system tables provides enough information to identify when the
index statistics were last updated and the percentage of rows that have changed since
the last update of the statistics. The system table sys.sysindexes is joined to sys.tables
on their key column id/object_id, and sys.tables is joined to sys.schemas on the
schema_id column.

 The script retrieves schema name, table name, index name, current row count,
and number of changes. It calculates the number of rows changed as a percentage
and uses the SQL function STATS_DATE to determine when the statistics for the index
were last updated.

 You filter out indexes with an index id (indId) of 0 because these aren’t indexes;
they’re heaps. You also filter out indexes with fewer than 500 rows, because statistics
are more important for larger tables. You also filter out system objects. The results are
sorted by schema name, table name, and index name.

 An example of the type of output for this query is shown in figure 3.12.

3.10.2 The importance of statistics

When the optimizer looks at how it will fulfill a user’s query, it inspects the JOIN and
WHERE clause and determines whether an index should be used. Statistics have an
impact on both whether an index is used and how it would be used. Statistics describe
the distribution and density of data values. Knowing the statistics for a given index col-
umn, you can estimate the probability of a given data value being used in a WHERE
clause. Knowing this, the optimizer can choose a relevant index and decide how that
index should be used, be it a seek, scan, or lookup.

 You can see that statistics can have a profound effect on the performance of a
query. Unfortunately, statistics can become stale; this is especially true of larger tables.
An index’s statistics tend to be updated automatically when 20% of its rows have
changed. For large tables, this might take a considerable time, during which queries
may run more slowly because of having stale statistics.

Figure 3.12 Output showing the current state of your statistics
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 3 Index DMVs
To determine whether the statistics should be updated, you should look at the column
% Rows Changed together with the Statistics Last Updated column. For a large table,
perhaps the statistics need to be updated on a daily basis. I’ve found this to be the case
where the current date is part of the index key.

 You could use the output to automatically update the statistics of individual
indexes. Because you have the individual index names, you could target your updates
to the relevant indexes. This will allow you to have a faster statistics update or a higher
sampling percentage within the same time period as a blanket table update.

 In chapter 10 I’ll provide a script that automatically updates the index statistics in
an intelligent manner. The script updates only the statistics of the indexes whose data
has changed and does so using an intelligent sampling algorithm.

 We’ve discussed various aspects of indexes in detail in this chapter. One of the
themes that comes through is the conflict between the usefulness of indexes in
retrieving data and their cost in terms of unnecessary updates. We’ll examine this
theme next.

3.11 A holistic approach to managing indexes
Indexes have a significant contribution to make to the discussion relating to balancing
transactional and reporting systems. Typically, queries in transactional systems update
a small number of rows relatively quickly. If they need to update additional indexes
(required for reporting), the update will add time to the query duration, transaction
time, and resource locks. By contrast, queries in reporting systems typically retrieve a
large number of rows, run for long time periods, and often require many indexes. If
both of these conflicting systems are present on the same database, you should try to
balance these two contradictory requirements.

 Ideally, you’d have the two systems (transactional and reporting systems) on differ-
ent databases and preferably on different servers. The transactional system could feed
the reporting system with periodic updates.

 If system separation isn’t feasible, you should take steps to minimize the adverse
effects of indexes. This would include ensuring that unused or high-maintenance
indexes are removed (see the scripts given earlier for this). In addition, indexes
that are used heavily or for important queries should be optimized, with reference
to their statistics, fill factor, and fragmentation (again, you have scripts to discover
these things).

 Another solution might be to disable reporting indexes during the transactional
processing and reenable them during the reporting processing. You could also see
how indexes are used in terms of reads/writes and compare this with the number of
I/O reads/writes.

 Databases tend to have a bias toward either reporting or transactional processing.
Even with transactional systems, the database typically has more reads than writes,
often by a factor of at least 5 or 10, so you need to be careful not to overestimate the
cost of index updates (unless you have lots of indexes on a table!). Database read
www.it-ebooks.info

http://www.it-ebooks.info/

91Summary
performance tends to be inversely proportional to the index fill factor, so a fill factor
of 50% means reads are twice as slow as when the fill factor is 100.

3.12 Summary
Indexes are critical to query performance. In this chapter we’ve discussed the differ-
ent types of indexes along with the different index access mechanisms.

 I’ve provided a variety of scripts that use DMVs to identify indexes that may be
suboptimal, unnecessary, or even missing. We’ve discussed several factors that relate
to indexes that can be used to optimize the identified indexes, resulting in faster-
performing queries.

 Indexes are a vital element in determining how a table’s data is accessed, thus
impacting query performance. Having looked at various useful aspects of indexes,
we’ll now move on to looking at the execution of SQL queries in the next chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

Improving poor query
performance
Slow-performing queries can have a costly impact on systems. When queries run
slowly, transactions and locks are held longer, leading to an increased possibility of
blocking, which can cause other queries in turn to run more slowly. All of this can
lead to more client application timeouts.

 Identifying the slowest queries will allow you to make targeted improvements,
confident in the knowledge that any improvement to these queries will have the
biggest overall impact on performance.

 As well as looking at slow-running queries, we’ll look at other aspects of queries
that could be indicative of an underlying problem or could be used to target
improvements. Various aspects of queries that make use of the CLR are discussed
separately in chapter 7, “Common Language Runtime DMVs.”

 So that you’ll get the most from the scripts described in this chapter, first I’ll
explain how and why SQL queries are cached.

This chapter covers
■ Query execution
■ Identifying different aspects of poorly

performing queries
■ How to improve poorly performing queries
92

www.it-ebooks.info

http://www.it-ebooks.info/

93Understanding executed queries
4.1 Understanding executed queries
When a SQL query is run for the first time, the optimizer has to determine an optimal
way of satisfying the query. Typically, the optimizer looks at the record counts, avail-
able indexes, and statistics to determine the access paths necessary to fulfill the query
easily and quickly. The optimizer takes time to do this work. Rather than having to
perform this work for queries that are the same (except for different parameters), the
optimizer creates a cached plan that describes the access mechanism. This plan can
be reused by all subsequent similar queries.

 Stored procedures have cached plans and so do many ad hoc queries. With ad
hoc queries, reuse can be restricted based on the parameters supplied and the sim-
plicity of the query. Cached plans allow subsequent reruns of the queries to run
more quickly, because the access method is already known. Although this is fine for
queries where the underlying data doesn’t change significantly (in terms of the dis-
tribution and density of data values), there can be problems when the underlying
data does change.

 In addition, when the cached plan is created, it’s based on the parameters initially
supplied to it. If these initial parameter values are atypical (for example, getting data
where data volumes are based on a holiday), then subsequent reuse of the plan is
likely to be suboptimal. Indeed, when a query suddenly starts to run slowly, it’s often
advisable to recompile it, because its cached plan may have been based on atypical
parameters. Note that when the data in the underlying tables changes significantly
(typically 20% of the table changes), the statistics are automatically updated. This
leads to any related SQL queries being recompiled and a new cached plan created
when the queries are next run.

 I’ll have a lot more to say about this in the next chapter when we identify and dis-
cuss which queries are running slower than normal in section 5.5, “Slower-than-
normal queries.”

4.1.1 Aggregated results

It’s important to remember that the DMVs accumulate metrics since the last SQL
Server reboot or restart. Often you may want to clear the DMVs to give you a clean
starting point from which to take your measurements. Clearing the DMVs on produc-
tion systems is generally not recommended. Instead, you can infer the effects of your
SQL queries on the DMVs by using DMV snapshots. For more information about this
method of measuring the effects on DMVs without resetting them, see “Calculating
DMV changes” in chapter 2.

4.1.2 Clearing the cached plans

If a SQL query hasn’t been run on SQL Server since the last reboot, it won’t be present
in the DMVs. This is especially important if you’re using the DMVs to determine
whether an object (for example, a stored procedure, table, or index) hasn’t been used
and could be removed.
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4 Improving poor query performance
 It’s possible to save DMV data periodically into user-defined tables; an example
of this is given in chapter 11, section 11.7, “Who’s doing what and when?” Also, in
SQL Server 2008 and higher, you might want to consider using the Data Collector,
which stores server-wide data, including that relating to DMVs, into a centralized
data warehouse for later analysis. Several tools also store DMV data (for example,
DMVStats).

 In addition to the aforementioned caveats, there are other cases where the DMVs,
or some of them, may be cleared. These cases are reboots, a flushed cache, and mem-
ory pressure.

REBOOTS/RESTARTS

When SQL Server is rebooted, or the service is stopped and restarted, any DMV data
is lost.

FLUSHED CACHE

Issuing certain DBCC commands (for example, DBCC FreeProcCache) will cause the
cached plans to be flushed out. Any SQL queries that run subsequently will re-create
the cached plans anew. Such commands were discussed in the section “Clearing
DMVs” in chapter 1. Typically, you use these commands to provide a clean starting
point for any DMV work. An alternative to this approach, which doesn’t involve clear-
ing the DMVs, is to use DMV snapshots, as already discussed.

MEMORY PRESSURES

Memory is a finite resource on SQL Server. Keeping a large number of cached plans
can quickly fill the available memory, especially in systems that create lots of SQL que-
ries that differ subtly (for example, having different environment settings), resulting
in separate cached plans for each one. When SQL Server observes this pressure on its
memory, it uses an algorithm to remove the least-used cached plans.

4.2 Finding a cached plan
As you’ve seen in the previous section, when a SQL query (batch or stored procedure)
is run, the optimizer determines how it will fulfill its needs. Typically, the optimizer
looks at the number of rows in the tables, the indexes, and statistics, and determines
the best way to access the table’s data.

 Viewing the cached plan associated with a SQL query is a great way to discover why
a query is behaving as it is. For example, why is the query taking too long? Is it using
an index or a table scan? Is an index being used appropriately (an index seek rather
than an index scan)?

4.2.1 How to find a cached plan

Cached plans contain detailed information about how a given query request is to be
fulfilled. Running the SQL script given in listing 4.1 will retrieve the first 20 cached
plans that contain the text “PartyType” B. “PartyType” in the following listing is the
www.it-ebooks.info

http://www.it-ebooks.info/

95Finding a cached plan
text we know is in the cached plan we want to investigate further. Typically, this filter, if
specific enough, will retrieve only the cached plan we’re interested in.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 st.text AS [SQL]
 , cp.cacheobjtype
 , cp.objtype
 , COALESCE(DB_NAME(st.dbid),
 DB_NAME(CAST(pa.value AS INT))+'*',
 'Resource') AS [DatabaseName]
 , cp.usecounts AS [Plan usage]
 , qp.query_plan
FROM sys.dm_exec_cached_plans cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
OUTER APPLY sys.dm_exec_plan_attributes(cp.plan_handle) pa
WHERE pa.attribute = 'dbid'
 AND st.text LIKE '%PartyType%'

In the listing, one DMV and three DMFs are involved in finding a cached plan; a brief
description of each is given in table 4.1.

The joining of the DMV and DMFs provides us with enough information to identify the
cached plans for the specified text pattern given by the LIKE clause, across all the data-
bases on the server. The DMV sys.dm_exec_cached_plans provides the plan_handle
used to CROSS APPLY to all three DMFs. The cached plan’s plan_handle is passed to
the DMF sys.dm_exec_sql_text to retrieve the text of the SQL query. Similarly, the
cached plan’s plan_handle is passed to the DMF sys.dm_exec_query_plan to retrieve
the cached plan of the query. Finally, the cached plan’s plan_handle is passed to the
DMF sys.dm_exec_plan_attributes to decode the underlying database name for any ad
hoc or prepared queries.

Listing 4.1 How to find a cached plan

Table 4.1 DMV/DMFs to find a cached plan

DMV/DMF Description

sys.dm_exec_cached_plans Contains cached query plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given SQL handle
or plan handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by
a given plan handle

sys.dm_exec_plan_attributes DMF used to obtain the underlying database for ad hoc or pre-
pared queries (as opposed to stored procedures)

Join cached plan,
text, and plan

Text to search
plan for

B

www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 4 Improving poor query performance
 We use a common pattern to extract the underlying database name for any ad hoc
or prepared queries. For more detail on these common patterns, see chapter 2.

 The query we execute selects the first 20 queries that contain the text “PartyType”
in the SQL query, across all databases on the server. This query can be very useful
when searching the SQL queries for a given comment, for example, a given change
number, change implementer, or date of change.

An example of the type of output for this query is shown in figure 4.1.
 You could amend the script presented in listing 4.1 to filter for cached plans on a

given database only. You can also filter on the objtype to look only at nonstored pro-
cedure SQL queries, if you’re interested in the number of ad hoc queries running on
the server.

 The code snippet presented allows you to search for a cached plan that contains a
given piece of text. Later, in the next chapter (in sections 5.1 to 5.4), I’ll present
another code snippet that allows you to search inside the cached plans for indicators
of poor performance.

LIKE pattern matching
There’s one thing to be careful of when searching for names that are wrapped in
square brackets or have an underscore, as is sometimes the case in SQL Server
function names, for example [dbo].[Some_Function_Name]. When a LIKE state-
ment is used, it interprets the underscore to mean any single character and the
square brackets to means any single character within the set.

It’s possible to escape these characters so they can be used, by preceding the rel-
evant string in with a backslash (\). For example, to find routines that contain the
text “dba_,” the LIKE statement would be

LIKE '%dba_%' ESCAPE '\'

Figure 4.1 Output showing cached plans that contain the text “PartyType”
www.it-ebooks.info

http://www.it-ebooks.info/

97Finding where a query is used
4.3 Finding where a query is used
When you first join a new organization, you may need to quickly understand the busi-
ness’s SQL queries and database structures. You may also need to perform impact anal-
ysis of query changes or investigate production problems where the only lead is an
error message relating to the table or partial query information.

 In all these cases, knowing where a given SQL query is used, what stored proce-
dures it’s in, and how it was executed should help you gain a better understanding of
the problem and help in providing a solution.

4.3.1 Identifying where a query is used

Identifying where a given query is used can give you a better understanding of system
usage and can help provide faster problem resolution. Running the SQL script given
in the following listing will identify the first 20 queries B that contain the text you’re
searching for, in this case, “insert into dbo.deal.” C

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
WHERE SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1)
LIKE '%insert into dbo.deal%'

Here one DMV and two DMFs are involved in identifying where a query is used.
Table 4.2 offers a brief description of each.

Listing 4.2 Finding where a query is used

Table 4.2 DMV/DMFs used to identify where a query is used.

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan_handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by
a given plan_handle

Extract SQL
statement

B

Text to search
plan for

C

www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 4 Improving poor query performance
By joining the DMV and DMFs we have sufficient information to identify where the
queries are used, across all the databases on the server. The DMV sys.dm_exec_query_
stats is joined to the DMFs via the CROSS APPLY keyword. The query’s sql_handle is
passed to the DMF sys.dm_exec_sql_text to retrieve the text of the SQL query. Simi-
larly, the query’s plan_handle is passed to the DMF sys.dm_exec_query_plan to
retrieve the cached plan of the query. We use a common pattern to extract the Indi-
vidual Query from the Parent Query.

 The query we execute selects the 20 queries that contain the SQL text, across all
databases on the server. We can restrict the results further by specifying the database
we want to search.

 Sample output for this query is shown in figure 4.2.
 Knowing where a given SQL query is used is useful when examining the impact of

changes or when you want to gain a better understanding of a system. For example,
you might want to know where a given table is updated or inserted into or which
stored procedure contains a given line of SQL or text. The cached plan supplied with
the output should prove useful in helping you improve the query’s performance.

 Let’s now look at a code snippet that you’ll want to run often. It identifies queries
that take the longest time to run; these are primary candidates for performance
improvements.

4.4 Long-running queries
Probably the most common request from users about their queries is, “Why is my
query running so slowly?” There can be many reasons why a query is running slowly.
In this section I’ll show you how to obtain a list of the slowest queries and discuss what
you can do to improve their performance.

 The DMV sys.dm_exec_query_stats records various metrics about the performance
of SQL queries. It’s important to explain the different metrics here because there are
various measures of slowness. For most users, slowness is measured by the total dura-
tion of a query. The DMV sys.dm_exec_query_stats records this in the column total_
elapsed_time (as microseconds). This total_elapsed_time consists of both the amount
of time spent on the CPU doing work (recorded in the column total_worker_time)
and the time spent waiting to execute.

Figure 4.2 Output showing the results of searching for a given query
www.it-ebooks.info

http://www.it-ebooks.info/

99Long-running queries
Time waiting to execute can be viewed as time being blocked, because the query
should be running but for some reason it can’t get onto the CPU. There are many rea-
sons why the query may be waiting to execute, including waiting to acquire a lock on a
resource and waiting for I/O to complete.

 We have three different measures of query performance: total duration, time on
the CPU, and time being blocked. We’ll examine each of these individually in scripts
within this section. First we’ll concentrate on total duration, because this is how users
typically report a query as being slow.

4.4.1 Finding the queries that take the longest time to run

If you can identify slow-running queries, you should be able to target your improve-
ments and increase the performance of the server as a whole. Running the SQL script
given in the next listing will identify the top 20 queries B that take the longest time to
run, as ordered by total_elapsed_time C.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 CAST(qs.total_elapsed_time / 1000000.0 AS DECIMAL(28, 2))
 AS [Total Duration (s)]
 , CAST(qs.total_worker_time * 100.0 / qs.total_elapsed_time
 AS DECIMAL(28, 2)) AS [% CPU]
 , CAST((qs.total_elapsed_time - qs.total_worker_time)* 100.0 /
 qs.total_elapsed_time AS DECIMAL(28, 2)) AS [% Waiting]
 , qs.execution_count
 , CAST(qs.total_elapsed_time / 1000000.0 / qs.execution_count
 AS DECIMAL(28, 2)) AS [Average Duration (s)]
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
WHERE qs.total_elapsed_time > 0
ORDER BY qs.total_elapsed_time DESC

In the listing, one DMV and two DMFs are involved in identifying the queries that take
the longest time to run. A brief description of each is given in table 4.3.

Listing 4.3 The queries that take the longest time to run

Extract SQL
statement

B

Sort by slowest
queries

C

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4 Improving poor query performance
Joining the DMV and DMFs provides enough information to identify the queries that
take the longest to run, across all the databases on the server. The DMV sys.dm_
exec_query_stats is joined to the DMFs via the CROSS APPLY keyword. The query’s
sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the text of the SQL
query. Similarly, the query’s plan_handle is passed to the DMF sys.dm_exec_query_plan
to retrieve the cached plan of the query. We use a common pattern to extract the Indi-
vidual Query, which the timings relate to, from the Parent Query.

 If there isn’t much data in the DMVs or some of the DMV columns have a zero
value, you might encounter a “divide by zero” error. To prevent this, a WHERE clause is
added to the script to ensure that all queries have a total_elapsed_time value of
greater than zero. This won’t affect the results, because queries that execute in zero
time won’t be slow queries.

 The query we execute selects the 20 queries that take the longest time to run,
across all databases on the server. The query calculates the total elapsed duration in
seconds, by dividing the total_elapsed_time column by 1,000,000 because this col-
umn’s value relates to microseconds. We use the T-SQL CAST function to output the
result to two decimal places. Similarly, the average elapsed time is expressed in sec-
onds, by dividing the total_elapsed_time column by 1,000,000 and then dividing again
by the number of times the query has executed (execution_count).

 The percentage of time the query spent waiting on resources, as opposed to exe-
cuting on the CPU, is also calculated by multiplying the difference between total_
elapsed_time and total_worker_time by 100 and dividing the result by the total_elapsed_
time. Similarly, we calculate the percentage of the time the query spends doing work on
the CPU by multiplying the total_worker_time by 100 and dividing the result by the
total_elapsed_time. In both cases, we use the T-SQL CAST function to display the result
to two decimal places.

 Having these values will allow us to determine whether the query has spent most of
its time waiting or executing. This will be useful in determining whether the query’s
slowness is a result of internal or external factors.

 The name of the database, the Individual Query, the Parent Query, and the
query’s cached plan are also output. The output is sorted by total_elapsed_time in
descending order.

 Figure 4.3 shows an example of the type of output for this query.

Table 4.3 DMV/DMFs to identify the queries that take the longest time to run

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by a
given plan_handle
www.it-ebooks.info

http://www.it-ebooks.info/

101Long-running queries
4.4.2 The impact of long-running queries

I’m sure you’ll agree that obtaining details of the queries taking the longest time to
run via DMVs is significantly easier than doing the same thing with the typical alterna-
tive: the SQL Server Profiler utility. You must start SQL Server Profiler before the que-
ries are run or, as often happens, before the queries are rerun. It also makes more use
of system resources, and because of this, DBAs are often reluctant to use it on produc-
tion systems. When the Profiler is finished (it may take some time), the results need to
be amalgamated, and this can be cumbersome when the SQL queries have different
parameters and routine signatures.

 To do the same thing with DMVs, you query the already populated DMVs. If you’re
interested in the slowest queries in a given time period, you can use the DMV snapshot
technique discussed in chapter 2.

Now that we’ve identified the queries that take the longest time to run, the next
step is to determine why they’re running so slowly. Finally, we’ll look at how to
improve them.

 One of the columns output from the script is named % waiting; this column is use-
ful for determining whether most of the query’s time was spent doing work or waiting
on another resource. If the % waiting value is relatively high, say over 60%, the query
is spending less time on the CPU doing work and more time waiting on other
resources before it can do its work. This points to external factors as the primary
source of the query’s slowness.

 Similarly, if the % waiting column is relatively low, say below 40%, the query is
spending more time on the CPU doing work than waiting on resources; this points

The accumulative effect of short-duration queries
An interesting observation seen easily with DMVs is the accumulative effect of
queries that individually take only a small amount of time to run but collectively
can have a significant impact. When the SQL Server Profiler is used, it’s common
to filter out queries that take less than a given time to run. In this case, the cumu-
lative effect of these queries would be missed.

Figure 4.3 Output showing the queries that take the longest time to run
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4 Improving poor query performance
more to internal factors as the cause of the query’s slowness. For queries that have a
% waiting in the range of 40% to 60%, we should look at both external and internal
factors. This approach is summarized in table 4.4.

Okay, what are these factors we should be looking at? For queries that have a high
% waiting value, the query is unable to get onto the CPU to do its work. The external
factors (external in that they’re outside this query’s control) that are stopping this
query from getting to the CPU include other queries using the CPU, waiting on I/O to
complete, blocking by other queries, and lock escalation. You can verify that interac-
tion with other queries is the cause of the slowness by running the query on a stand-
alone database or at a time when other queries aren’t running. Indeed, one solution
to improving the performance of blocked queries is to run them at a time when sys-
tem usage is low.

 For queries with a low % waiting value, the query has gotten on the CPU and is
doing a lot of work. Internal factors that can affect the query’s performance include
missing indexes, inappropriate index usage (for example, a repeated seek instead of
a scan), stale statistics, and data type conversions (this can lead to an index not
being used).

 Alternatively, the query could be processing a lot more data than usual. Later, in
chapter 5, we’ll examine the case where the queries are running slower than normal,
taking into account the amount of I/O involved.

 For external factors, you can see the cause of the waits via the DMV sys.dm_
os_wait_stats. If you create a DMV snapshot delta when you run your slow queries,
you’ll discover the cause of the waiting for your specific queries. For more informa-
tion on how to create a DMV snapshot delta, see “Calculating DMV changes” in
chapter 2.

 It may be possible to improve the performance of queries that have a high %
waiting value by lowering the amount of locking the query performs. For read-only
queries, which make no changes to the underlying data, appending WITH(NOLOCK)
after each table name in the query will result in the query taking no locks or honor-
ing any locks on the table, both of which should improve performance. For exam-
ple, to select rows from a table named dbo.Deal, without any locking, run the
following command:

SELECT * FROM dbo.Deal WITH(NOLOCK)

Table 4.4 Percentage waiting and cause of slowness

% waiting Cause of slowness

> 60% External factors

< 40% Internal factors

Between 40% and 60% Both external and internal factors
www.it-ebooks.info

http://www.it-ebooks.info/

103Queries that spend a long time being blocked
For update queries, if the queries run at the same time as other queries that might
update the same data, adding WITH(NOLOCK) can cause problems and should be
avoided. But if an update query deals with a subset of data that isn’t updated by other
queries that run at the same time (perhaps you handle accounts starting with letters
A–M and someone else handles accounts starting with letters N–Z), appending
WITH(NOLOCK) to the table name should be advantageous.

 It’s possible to apply one statement to the top of a script that behaves in the same
way as appending WITH(NOLOCK) to each table. You can accomplish this with the fol-
lowing command:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

For queries with a low % waiting value, their slowness is more affected by internal fac-
tors. These might include missing indexes, stale statistics, incorrect fill factor, and
fragmented indexes. You can get more insight into the factors that are limiting a
query’s performance by looking at the query’s cached plan. The cached plan is pro-
vided as one of the output columns in the script. Please see chapter 3, “Index DMVs,”
for a consideration of these internal factors and how to correct them. It’s also worth-
while looking at the plan for any oddities such as data type conversions or key look-
ups. Data type conversions relate to an incorrect type of data being used, in which case
SQL Server will do a conversion; this might result in an otherwise useful index being
ignored. I’ll provide a script in chapter 5, section 5.3 (“Finding queries that have
implicit data type conversions”), that will enable you to search cached plans for such
oddities for subsequent correction.

 Sometimes, no matter what you change, the query’s performance doesn’t improve.
As a last resort I suggest you rewrite the query into smaller steps. Providing simpler
SQL queries often gives the optimizer more options, resulting in an improved plan
with better performance.

 Often queries take a long time to run because they’re being blocked by other que-
ries or are waiting on resources. We’ll investigate this in the next section.

4.5 Queries that spend a long time being blocked
A SQL query may run quickly when it’s the only query running on the server; this
behavior may change dramatically when it’s running together with other queries.
Queries use shared resources, such as CPU and I/O subsystems, which may result in
limited resources being available for other queries. In addition, update queries need
to protect their rows while they’re being changed and wrap a transaction around the
rows being changed. These changes result in both fewer resources for other queries
and a potential for blocking while the query performs its changes. For the purpose of
this discussion, I’ll use the terms blocking and waiting interchangeably.

 The DMV sys.dm_exec_query_stats records metrics that allow you to determine
how much of a query’s run duration is spent being blocked. To calculate the amount
of blocking, subtract the total_worker_time from the total_elapsed_time.
www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 4 Improving poor query performance
4.5.1 Finding the queries that spend the longest time being blocked

If you can identify the queries that spend the longest time being blocked, you can tar-
get these for improvement, perhaps providing a different access mechanism to the
underlying data or providing a less-stringent locking regime. Both of these should
improve concurrency and throughput. Running the SQL script given in the following
listing calculates the time blocked B, for the top 20 most-blocked queries C, as
ordered by Total time blocked (s) D.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 CAST((qs.total_elapsed_time - qs.total_worker_time) /
 1000000.0 AS DECIMAL(28,2)) AS [Total time blocked (s)]
 , CAST(qs.total_worker_time * 100.0 / qs.total_elapsed_time
 AS DECIMAL(28,2)) AS [% CPU]
 , CAST((qs.total_elapsed_time - qs.total_worker_time)* 100.0 /
 qs.total_elapsed_time AS DECIMAL(28, 2)) AS [% Waiting]
 , qs.execution_count
 , CAST((qs.total_elapsed_time - qs.total_worker_time) / 1000000.0
 / qs.execution_count AS DECIMAL(28, 2)) AS [Blocking average (s)]
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
WHERE qs.total_elapsed_time > 0
ORDER BY [Total time blocked (s)] DESC

In this example, one DMV and two DMFs are involved in identifying the queries
that spend the longest time being blocked. A brief description of each is given in
table 4.5.

Is blocking the same as waiting?
When a query can’t run, SQL Server records details of why it can’t run. If a query is
prevented from running because another query has access to the resources it
wants, this is usually taken to be blocking. When a query is prevented from running
due to other factors, such as waiting for I/O to complete, this is usually taken to
mean waiting. In essence, blocking is a type of waiting that relates to locks and
can be thought of as a subset of waiting. In most situations, you can treat the
terms blocking and waiting as synonymous.

Listing 4.4 The queries spend the longest time being blocked

Calculate time
blocked

B

Extract SQL
statementC

Sort by most
time blocked

D

www.it-ebooks.info

http://www.it-ebooks.info/

105Queries that spend a long time being blocked
By joining the DMV and DMFs, we have adequate information to identify the queries
that spend the longest time being blocked, across all the databases on the server.
The DMV sys.dm_exec_query_stats is joined to the DMFs via the CROSS APPLY key-
word. The query’s sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve
the text of the SQL query. Similarly, the query’s plan_handle is passed to the DMF
sys.dm_exec_query_plan to retrieve the cached plan of the query. We use a com-
mon pattern to extract the Individual Query, which the timings relate to, from the
Parent Query.

 If there isn’t much data in the DMVs or some of the DMV columns have a zero
value, it’s possible to encounter a “divide by zero” error. To prevent this, a WHERE
clause is added to the script that ensures all queries have a total_elapsed_time value of
greater than zero.

 The query we execute selects the 20 queries that are blocked the most, across all
databases on the server. The query calculates the Total Time Blocked in seconds, by
subtracting the total_worker_time column from the total_elapsed_time column and
dividing the result by 1,000,000 because the column’s value relates to microseconds.
We use the T-SQL CAST function to output the result to two decimal places. Similarly,
the Blocking Average is expressed in seconds, by subtracting the total_worker_time col-
umn from the total_elapsed_time column, dividing the result by 1,000,000, and then
dividing again by the number of times the query has executed (execution_count).

 The other column outputs are % CPU, % Waiting, DatabaseName, Individual Query,
Parent Query, and the query’s cached plan (query_plan). The output is sorted by Total
time blocked in descending order.

 If you’re interested in which queries are the most blocked, as a percentage of the
total time it takes to run the query, you can get this information by editing the existing
script to sort by % waiting in descending order. This will allow you to target your
improvement efforts on the external factors described in the previous section.

 Sample output for this query is shown in figure 4.4.
 The results are sorted by the Total time blocked and show the queries that have

spent the most time being blocked. We also record the percentage of time the query
spent on the CPU (% CPU column) and the percentage of time the query spent being
blocked (% Waiting column).

Table 4.5 DMV/DMFs to reveal the queries that take the longest time being blocked

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan_handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by
a given plan_handle
www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 4 Improving poor query performance
For more details on how you can improve the performance of the most-blocked que-
ries, please read the previous section on the impact of queries that take the longest
time to run.

 When a query isn’t waiting or being blocked, it’s typically using the CPU. In the
next section I’ll identify which queries are using the most CPU and suggest why this
might reflect various performance problems, along with some possible solutions.

4.6 CPU-intensive queries
Queries need to coexist with other queries running at the same time. Therefore they
need to share resources such as CPU. If a query is making high usage of the CPU, it
means there may be less CPU resources for other queries, resulting in blocking and
poorer-performing queries. High CPU usage may also be a sign of problems, such as a
suboptimal cached plan or missing indexes.

 The DMV sys.dm_exec_query_stats records how long a query spends on the CPU, in
the column total_worker_time; this forms the basis of our code snippet.

4.6.1 Finding the queries that use the most CPU

If you can identify the queries that use the most CPU, you can inspect their cached
plans for indications of why they’re so CPU intensive, with a view to improving their
performance. It may be because they’re doing a lot of calculations, and perhaps this
work could be offloaded to a CLR function (see chapter 7 for more information about
this). Running the SQL script given in the next listing will identify the top 20 queries

B that use the most CPU, as ordered by Total CPU time (s) C.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 CAST((qs.total_worker_time) / 1000000.0 AS DECIMAL(28,2))
 AS [Total CPU time (s)]
 , CAST(qs.total_worker_time * 100.0 / qs.total_elapsed_time
 AS DECIMAL(28,2)) AS [% CPU]
 , CAST((qs.total_elapsed_time - qs.total_worker_time)* 100.0 /
 qs.total_elapsed_time AS DECIMAL(28, 2)) AS [% Waiting]

Listing 4.5 The queries that use the most CPU

Figure 4.4 Output showing the queries that spend the longest time being blocked
www.it-ebooks.info

http://www.it-ebooks.info/

107CPU-intensive queries
 , qs.execution_count
 , CAST((qs.total_worker_time) / 1000000.0
 / qs.execution_count AS DECIMAL(28, 2)) AS [CPU time average (s)]
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
WHERE qs.total_elapsed_time > 0
ORDER BY [Total CPU time (s)] DESC

In the listing, you can see that one DMV and two DMFs are involved in identifying the
queries that use the most CPU. A brief description of each is shown in table 4.6.

The joining of the DMV and DMFs provides us with enough information to identify the
queries that use the most CPU, across all the databases on the server. The DMV sys.dm_
exec_query_stats is joined to the DMFs via the CROSS APPLY keyword. The query’s
sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the text of the SQL
query. Similarly, the query’s plan_handle is passed to the DMF sys.dm_exec_query_
plan to retrieve the cached plan of the query. We use a common pattern to extract the
Individual Query, which the timings relate to, from the Parent Query.

 If there isn’t much data in the DMVs or some of the DMV columns have a zero
value, you might encounter a “divide by zero” error. To prevent this, a WHERE clause
added to the script ensures that all queries have a total_elapsed_time value of greater
than zero.

 The query we execute selects the 20 queries that use the most CPU, across all data-
bases on the server. The query calculates the Total CPU time in seconds, by dividing
the total_worker_time column by 1,000,000 because the column’s value relates to
microseconds. We use the T-SQL CAST function to output the result to two decimal
places. Similarly, the CPU Time Average is expressed in seconds, by dividing the
total_worker_time column by 1,000,000 and then dividing again by the number of
times the query has executed (execution_count).

Table 4.6 DMV/DMFs to identify the queries that use the most CPU

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan_handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by
a given plan_handle

Extract SQL
statementB

Sort by most
CPU used

C

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 4 Improving poor query performance
The other column outputs are % CPU, % Waiting, DatabaseName, the Individual
Query, the Parent Query, and the query’s cached plan. The output is sorted by Total
CPU time (s) in descending order.

 If you’re interested in which queries use the most CPU as a percentage of the total
time it takes to run the query, you can get this information by editing the existing
script to sort by % CPU in descending order. This will allow you to target your
improvement efforts on the internal factors described in the previous section.

 An example of the type of output for this query is shown in figure 4.5.
 The results are sorted by the Total CPU time (s) and show the queries that have

spent the most time using the CPU. We also record the percentage of time the query
spent on the CPU (% CPU column) and the percentage of time the query spent being
blocked (% Waiting column).

 For more detail on how you can improve the performance of the queries that use
the most CPU, read the previous section on the impact of queries that take the longest
time to run.

 In addition to using the CPU to target queries that might reflect an underlying per-
formance problem, it’s possible to use the amount of I/O in a similar manner. We’ll
investigate this next.

4.7 I/O-hungry queries
Rather than looking at SQL query performance from the perspectives of query dura-
tion, blocking, and CPU, you can look at performance from an I/O viewpoint. This is
particularly interesting because often I/O is the limiting factor on many database sys-
tems, where emphasis tends to be placed mainly on CPU and memory.

 The core functionality of database systems is to retrieve data, and this is reflected
in the amount of I/O involved. You can look at the queries that use the most I/O to
determine whether they can be changed to retrieve data more efficiently. Perhaps an
index is missing or is incomplete, or perhaps the SQL is incorrect or not specific
enough, resulting in additional I/O.

 A high I/O value suggests that the server may be doing unnecessary work, poten-
tially increasing the number of locks on tables and indexes, leading to blocking and
timeouts in client applications.

 The DMV sys.dm_exec_query_stats records metrics that allow you to determine
how much I/O a query uses. The DMV includes details of both physical and logical

Figure 4.5 Output showing the queries that use the most CPU
www.it-ebooks.info

http://www.it-ebooks.info/

109I/O-hungry queries
reads and writes. Here we’ll concentrate on logical reads/writes, because typically
after the first read from the physical device, the data will already be in memory.

4.7.1 Finding the queries that use the most I/O

If you identify those queries that use the most I/O, inspecting their cached plans
might provide clues as to why they’re using a lot of I/O. This might be because an
index is missing or being used inappropriately because the statistics are stale. Running
the SQL script given in the following listing will identify the top 20 queries B that use
the most I/O, as ordered by Total IO C.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 [Total IO] = (qs.total_logical_reads + qs.total_logical_writes)
 , [Average IO] = (qs.total_logical_reads + qs.total_logical_writes) /
 qs.execution_count
 , qs.execution_count
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY [Total IO] DESC

In this script, one DMV and two DMFs are involved in identifying the queries that use
the most I/O. A brief description of each is given in table 4.7.

By joining the DMV and DMFs, we have enough information to identify the queries
that use the most IO, across all the databases on the server. The DMV sys.dm_
exec_query_stats is joined to the DMFs via the CROSS APPLY keyword. The query’s
sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the text of the SQL

Listing 4.6 The queries that use the most I/O

Table 4.7 DMV/DMFs to identify the queries that use the most I/O

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan_handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by
a given plan_handle

Extract SQL
statementB

Sort by
Total IO

C

www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 4 Improving poor query performance
query. Similarly, the query’s plan_handle is passed to the DMF sys.dm_exec_query_
plan to retrieve the cached plan of the query. We use a common pattern to extract the
Individual Query, which the timings relate to, from the Parent Query.

 The query we execute selects the 20 queries that use the most I/O, across all data-
bases on the server. The query calculates the Total IO by summing the columns
total_logical_reads and total_logical_writes. Similarly, the Average IO is calculated by
dividing the sum of the total_logical_reads and total_logical_writes by the number of
times the query has executed (execution_count).

 The other column outputs are DatabaseName, Individual Query, Parent Query,
and the query’s cached plan (query_plan). The output is sorted by Total IO in
descending order.

 An example of the type of output for this query is shown in figure 4.6.

4.7.2 Reducing the impact of queries that use the most I/O

The results are sorted by the Total IO and show the queries that have used the most
I/O. We also record the Average IO per query. When the execution_count is relatively
high and the Average IO relatively low, this suggests the query is being called repeat-
edly, getting a small amount of data per call. You may be able to optimize the query
to get more data in fewer calls. This should reduce the Total IO value, resulting in a
better-performing query. Looking at the Parent Query in the output will allow you to
determine if this is possible.

 Some SQL queries may have a high Total IO value because they’re getting a lot of
data, rather than getting a small amount of data repeatedly. If you examine the Indi-
vidual Query column in the script’s output, you may see some queries that start with
SELECT *; often this is used because users don’t know what data they need (maybe at
the start of a project). You should correct this to retrieve only the data column
required and thus reduce the Total IO value.

 You should also examine the SQL given in the Individual Query column for an
appropriate WHERE clause. Again, you should ensure you’re retrieving only the subset
of rows required.

Figure 4.6 Output showing the queries that use the most I/O
www.it-ebooks.info

http://www.it-ebooks.info/

111Frequently executed queries
If the Parent Query value is a function, it may be useful to search your code base (all
your SQL code) to see how this function is used. If the function is embedded in SQL
queries that are involved in various table joins, the function will be called for each
row in the resultant table. It’s often possible to cache this function value and supply
the cached value to the query in the WHERE clause. This will reduce the amount of
I/O and improve the performance of the query. I’ve known of many queries whose
performance has been significantly improved by caching any embedded function
calls they contain.

 You should examine the query_plan column in the script’s output for any entries
that might suggest the query is performing suboptimally; these include table scan,
index scan, stale statistics, and any implicit data conversions. I’ll provide scripts in
chapter 5, sections 5.1 to 5.4, to search for these items in the cached plans and also
detail why they’re typically detrimental factors.

 It could prove useful to match the tables given in the Individual Query output with
the tables specified in the missing indexes DMVs (see section 3.2, “Costly missing
indexes,” in chapter 3). Often a missing index will result in a corresponding increase
in I/O. Similarly, comparing this script’s output with the output from the queries that
use the most I/O or CPU or have the longest duration or the most blocking may show
how interlinked these “poor” queries are.

 Another potential indicator of poor query performance might be the number of
times a query is executed; this is especially true when the query involved is a function
that’s used in a JOIN condition. Let’s examine this next.

4.8 Frequently executed queries
If you know which queries are executed most often, you can target the objects that
they use (for example, indexes, statistics, and tables) to ensure they’re optimal. Mak-
ing improvements to the objects identified by these targeted queries should have a
positive impact on performance because you know they’re used often by queries.

 In addition, if you can find a way to rewrite these SQL queries more efficiently
(for example, caching function values), they’ll have a positive effect each time
they’re used.

 The DMV sys.dm_exec_query_stats records details of the number of times a given
SQL query has been executed.

4.8.1 Finding the queries that have been executed the most often

Identifying the most-executed queries allows you to target improvements, which will
be applied repeatedly as the queries are executed. Running the SQL script given in
the following listing will identify the top 20 queries B that are executed the most, as
ordered by execution_count C (see annotated lines in the next listing).
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 4 Improving poor query performance
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 qs.execution_count
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY qs.execution_count DESC;

In this listing, one DMV and two DMFs are involved in identifying the queries that are
executed most often. A brief description of each is given in table 4.8.

The joining of the DMV and DMFs provides enough information to identify the que-
ries that are executed most often, across all the databases on the server. The DMV
sys.dm_exec_query_stats is joined to the DMFs via the CROSS APPLY keyword. The
query’s sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the text of
the SQL query. Similarly, the query’s plan_handle is passed to the DMF sys.dm_
exec_query_plan to retrieve the cached plan of the query. We use a common pat-
tern to extract the Individual Query, which the execution count relates to, from the
Parent Query.

 The query we execute selects the 20 queries that are executed most often, across
all databases on the server. The other columns of output are DatabaseName, Parent
Query, and the query’s cached plan (query_plan). The output is sorted by execution_
count in descending order.

 An example of the type of output for this query is shown in figure 4.7.

Listing 4.7 The queries that have been executed the most often

Table 4.8 DMV/DMFs that identify the queries that are executed most often

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan_handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by
a given plan_handle

Extract SQL
statement

B

 Sort by most
executed

C

www.it-ebooks.info

http://www.it-ebooks.info/

113Frequently executed queries
4.8.2 Reducing the impact of queries that are executed most often

Knowing which SQL queries are executed most often provides you with a target for
improvement, because you know that if you can improve the performance of these
queries, it could have a significant impact on overall performance.

 To identify areas of potential performance improvement, you can inspect the SQL
text to ensure the following:

■ There’s no unnecessary sorting. Sometimes you may add an ORDER BY clause
in your testing. It may not be necessary because often sorting takes place on
the client.

■ You’re retrieving only the columns you need. During the initial phase of a proj-
ect, you’re unsure of the data you want, so you might issue a SELECT * for expe-
diency. You should correct this.

■ You have an appropriate WHERE clause. Again, you want to ensure that you’re
retrieving only the subset of rows you require.

Inspecting the cached plan associated with the query will allow you to check to see if
any suboptimal operations are being performed. I’ll present a script that does this in
the next chapter. Again, to identify areas of potential performance improvement, you
can check for the following:

■ Missing indexes.
■ Inappropriate index usage. Check for any index scans or lookups.
■ Missing statistics.
■ Implicit data type conversions.
■ Unnecessary sorting. A hash join often suggests an index is missing.

You can also check these items:

■ You have indexes on the join columns. When creating a database schema,
although indexes are created by default on primary keys, they are not created
on foreign keys.

Figure 4.7 Output showing the queries that are executed most often
www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 4 Improving poor query performance
■ Statistics are up to date and have a good sampling percentage. A script in chap-
ter 3 displays the current status of your database statistics.

If the Parent Query in the output is a function, it may be that it’s part of a JOIN or
WHERE clause, and as such it will get called repeatedly for each row in the resultant
join. This can have a detrimental effect on performance, and where possible the func-
tion value should be cached and the cached value used in the JOIN, in place of the
function call.

 In many cases, it’s possible to see correlations in the output of the different DMV
scripts given in this book. For example, a missing index may result in the queries that
use the underlying tables having high I/O and CPU values.

4.9 The last run of a query
Often it’s useful to know when a SQL query or stored procedure was last run. Similarly,
it might be useful to know when a table was last updated or accessed. You might want
to know this information when determining how a table came to be updated or to
understand why some queries were run out of sequence, giving spurious results.

 The DMV sys.dm_exec_query_stats records information that’s useful in determin-
ing when a query was first run (typically, since the last reboot) and last run. You can
limit your search by specifying the name of a stored procedure or an individual SQL
statement. Similarly, you can specify an object name, for example, a table or view, and
determine when this was last updated or read from.

4.9.1 Determining when a query was last run

As part of a larger piece of analysis work, it can often be useful to determine
when a given query was last run. Running the SQL script given in the following list-
ing will identify the top 20 times a given SQL query B was run, as ordered by last_
execution_time C. We identify the relevant query by supplying part of it as a filter
via the WHERE clause.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT DISTINCT TOP 20
 qs.last_execution_time
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
WHERE qt.text LIKE '%CREATE PROCEDURE%List%PickList%'
ORDER BY qs.last_execution_time DESC

Here, one DMV and one DMF are involved in identifying when a query was last run.
Table 4.9 provides a brief description of each.

Listing 4.8 Finding when a query was last run

Name of
routine we’re
looking for

B

Sort by last
time run

C

www.it-ebooks.info

http://www.it-ebooks.info/

115The last run of a query
By joining the DMV and DMF, we have enough information to identify when the
query was last run, across all the databases on the server. The DMV sys.dm_exec_
query_stats is joined to the DMF via the CROSS APPLY keyword. The query’s
sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the text of the
SQL query.

 The query we execute selects the 20 queries that contain the SQL text specified
by the WHERE clause, across all databases on the server. You can restrict the output
further by specifying the name of the database you’re interested in. By specifying
the CREATE PROCEDURE literal as part of the search criteria, you’ll retrieve only
one entry. If you were to specify just the stored procedure name (%List%Pick-
List%) in this example, you’d expect at least two entries, because in addition to the
stored procedure entry itself, you’ll also have entries for any client SQL that calls
this stored procedure.

 Again, you need to be careful when you specify the WHERE criteria for a stored
procedure, because the square brackets and underscore have special meaning for the
LIKE statement. Searching for “CREATE PROC%[dbo].[usp_PickList]” may not give
you the results you expect, because the square brackets are interpreted as “match any
of the characters inside the square brackets.”

 Sample output for this query is shown in figure 4.8.

4.9.2 Variations on searching for queries

In addition to searching for when a given routine was last run, you can search for
when a given SQL statement was last run. This might be useful if you want to deter-
mine which SQL queries updated or read from a given table or view.

 For example, you can use the code snippet given in the next listing to determine
when a table named dbo.Underlying last had rows added to it (this illustrates both
when a given SQL query was run and when a table was last updated).

Table 4.9 DMV/DMF to identify when a query was last run

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle

Figure 4.8 Output showing when a query was last run
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 4 Improving poor query performance
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 qs.last_execution_time
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
WHERE SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1)
LIKE '%INSERT INTO dbo.Underlying%'
ORDER BY qs.last_execution_time DESC

The listing is very similar to the other scripts we’ve created. The main point to note is
that the WHERE clause specifies the SQL statement or object we want information
about B.

 It’s also possible to determine which queries have run between two given points of
time. There’s a caveat with this, however, in that if a query is run outside the time limit
you specify, it won’t be in your results (because the DMV sys.dm_exec_query_stats only
records when it was last run).

 Similarly, the DMV sys.dm_exec_query_stats also records when a query was first
used; this is shown in the column creation_time. Again there’s a caveat: the times
relate only to the time since SQL Server was last rebooted, providing the cached plan
hasn’t been removed because of memory pressure or other factors.

4.10 Summary
This chapter has provided several SQL scripts that can use be used to identify prob-
lematic SQL queries from different perspectives. Each perspective identifies queries
that would benefit from further investigation, with the aim of improving their perfor-
mance. Such scripts include the following:

■ Finding a cached plan
■ Finding where a query is used
■ Which queries run the longest
■ Which queries are blocked the most
■ Which queries use the most CPU
■ Which queries use the most I/O
■ Which queries are executed the most often
■ Which stored procedures are not used

Listing 4.9 Finding when a table was last inserted

SQL query
we’re
looking for

B
Sort by last
time run
www.it-ebooks.info

http://www.it-ebooks.info/

117Summary
For each script, we discussed the importance of the area under investigation, the
impact of the factors discussed, and ways of improving the highlighted queries.

 It’s possible to extend the DMV snapshot pattern given in chapter 2 (“Common
patterns”), in listing 2.7, to create DMV deltas for many of the scripts given in this
chapter. This will allow you to determine the effect of a query on a wide range of
DMV metrics.

 You can do many more things with execution-based DMVs, such as determining
which plans have missing statistics or which queries are running slower than normal.
These and other examples are discussed in the next chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

Further query
improvements
The previous chapter discussed scripts that allow you to discover information about
the worst queries and how you might improve them. I’d now like to discuss a series
of scripts that are typically not explicitly concerned with finding the slowest or
worst item but rather indicate possible areas of concern and as such deserve to be
examined in further detail.

 We’ll look at how to search the cached plans for details of missing statistics and
missing indexes. Implementing these identified missing items could make a pro-
found improvement on the performance of your SQL queries.

 When SQL Server encounters a variable that has a different data type than
expected, it needs to spend time converting the data type. This is unnecessary
and can degrade performance. I’ll provide a script to identify these mismatched
data types.

This chapter covers
■ Identifying missing statistics and indexes
■ Identifying queries running slower than normal
■ Determining which SQL queries run over a

given time period
■ Capturing the relationships between DMV

snapshot deltas
118

www.it-ebooks.info

http://www.it-ebooks.info/

119Queries with missing statistics
 I’ll also show you how to identify queries that are running slower than normal
and provide a discussion of why this might have happened, together with some possi-
ble solutions.

 Because SQL queries typically don’t run in isolation, it can be important to know
which queries are running over a given time period. This is especially true where
blocking and locking are concerns. We’ll discuss a script that shows which SQL queries
are running over a given time period.

 Another script determines the effect of running queries on several DMVs. This will
allow you to combine and reinforce the results from these different DMVs, giving you
better insight into any problems.

 Finally, I’ll show you how to discover what SQL is currently running. Although I
provided a script for this in chapter 1, the version given here is an updated version
that uses DMVs only. Let’s get started by examining which SQL queries have miss-
ing statistics.

5.1 Queries with missing statistics
Previously we discussed the impact of statistics on query performance. In essence, sta-
tistics contain details about the distribution and density of column values in a table or
index. The optimizer uses this information to estimate the probability of access of a
given column’s value and thus provide an estimate of the cost of obtaining the under-
lying data.

 Statistics are created automatically for indexes. In addition, when the optimizer
comes across a column that’s used in a JOIN condition or a WHERE clause, and no
index exists, the optimizer will usually create statistics on the column. There are con-
ditions that prevent statistics from being created or updated, and we’ll discuss these
later in this section. Sometimes, non-index-related statistics, including missing statis-
tics, are indicators of missing indexes, and inspecting the DMVs that reveal missing
indexes should confirm this.

 It’s possible to search the cached plans for queries that have missing statistics. Next
up is a script that does just that.

5.1.1 Finding queries that have missing statistics

Statistics play a major role in the performance of SQL queries. I’ve witnessed huge
increases in performance when missing statistics have subsequently been created.
Running the SQL script given in the following listing will identify the top 20 queries
with missing statistics, ordered by usecounts, which represents the number of times
the cached plan has been used.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 st.text AS [Parent Query]

Listing 5.1 Finding queries with missing statistics
www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 5 Further query improvements
 , DB_NAME(st.dbid)AS [DatabaseName]
 , cp.usecounts AS [Usage Count]
 , qp.query_plan
FROM sys.dm_exec_cached_plans cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
WHERE CAST(qp.query_plan AS NVARCHAR(MAX))
 LIKE '%<ColumnsWithNoStatistics>%'
ORDER BY cp.usecounts DESC

In the listing, one DMV and two DMFs are involved in identifying the queries that con-
tain missing statistics. A brief description of each is given in table 5.1.

The joining of the DMV and DMFs provides you with enough information to identify the
queries that contain missing statistics, across all the databases on the server. The DMV
sys.dm_exec_cached_plans contains a plan_handle that’s passed to the DMF sys.dm_
exec_sql_text to retrieve the text of the SQL query. Similarly, the query’s plan_handle
is passed to the DMF sys.dm_exec_query_plan to retrieve the cached plan of the query.

 The key to understanding this script is converting the cached plan, which is stored
as XML, into a NVARCHAR(MAX) B, which can then be searched using the SQL LIKE
statement C. Although it’s possible to use XPATH to query more specifically and
obtain the results more quickly, using the current approach allows for a more generic
method of searching the cached plans and aids future maintenance. Using a similar
script, you can search for other items in the cached plans.

 The query we execute selects the top 20 queries that contain missing statistics,
ordered by how often the plan has been used, across all databases on the server. You
can restrict the results further by specifying the database you want to search, or indeed
part of the SQL text. You can further filter your results by making use of DMV deltas to
examine changed plans that run in a given time period. Chapter 2, “Common pat-
terns,” contains more information on how to do this.

 An example of the type of output for this query is given in figure 5.1.
 You’ll need to open up the cached plan to discover the individual statement that’s

involved with the missing statistics. If the plan opens as XML (this is the default with
SQL Server 2005), you may need to store the plan to the filesystem by saving it with an
extension of .sqlplan, which will allow you to reopen it as a visual cached plan (in dia-
gram mode). In SQL Server 2008, clicking the cached plan opens it in diagram mode.

Table 5.1 DMV/DMFs to identify the queries that contain missing statistics

DMV/DMF Description

sys.dm_exec_cached_plans Contains cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle or
plan handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by a
given plan_handle

Cast planB
Search for
missing statistics

C

www.it-ebooks.info

http://www.it-ebooks.info/

121Queries with missing statistics
You can search the diagram mode cached plan visually for a Table Scan with a yellow
triangle next to it, as shown in figure 5.2. Alternatively, you can search the XML ver-
sion of the cached plan for the text “<ColumnsWithNoStatistics>.” Both methods will
allow you to see the individual SQL statement that uses tables that relate to the miss-
ing statistics.

5.1.2 The importance of statistics

Where possible, especially for important queries, you should consider creating statis-
tics on the identified column. This will enable the optimizer to make better decisions
about the underlying data used by your queries. For example, to create a statistics
object named EmailAddressStats on a column named EmailAddress in a table named
dbo.Contact, with 5% sampling, use the following command:

CREATE STATISTICS EmailAddressStats
ON dbo.Contact (EmailAddress) WITH SAMPLE 5 PERCENT

Creating statistics data takes time, especially on large tables. Because of this, we often
obtain statistics based on a sample of data. In the example given here, 5% of the rows

Figure 5.1 Output showing the results of searching for queries with missing
statistics

Figure 5.2 Cached plan identifying missing column statistics
www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5 Further query improvements
in the underlying table were examined to obtain the statistics for the column
EmailAddress.

 Up-to-date statistics are often vitally important to the performance of SQL que-
ries, especially on larger tables. A script in a previous chapter detailed how to obtain
the date the statistics were last updated along with how much the data has changed
since the statistics were last taken. You can use the output from this script to auto-
matically update the relevant statistics, rather than wait for SQL Server to automati-
cally update the statistics after 20% of the data has changed. An example of this is
given in chapter 10.

 Typically, statistics are updated for a given table, using a command that’s similar to
the CREATE STATISTICS command, for example:

UPDATE STATISTICS dbo.Contact WITH SAMPLE 5 PERCENT

This command will update all the statistics objects on the table named dbo.Contact,
with a sampling of 5%. Although this might be okay for many circumstances, if you
know which indexes a SQL query uses, you can target the update of the statistics associ-
ated with these specific indexes. Because you’ll typically target fewer indexes, you
should be able to use a larger sampling percentage, compared with when you issue a
generic statistics update at the table level, for the statistics to update in the same time
period. We discussed a script in the previous chapter to identify which indexes are
used by a given routine, and that will allow us to make these targeted improvements.

5.1.3 Default statistics properties

By default, creating and updating statistics are enabled on SQL Server. Although it
isn’t recommended, you can disable these options. I’ve known cases where these
options were purposely disabled so that queries would run slower, with the inten-
tion of investigating these queries to determine what indexes need to be created.
Similarly, because updating the statistics can take a significant amount of time, I’ve
seen the default options disabled with a view to providing updated statistics at a
later time.

NOTE Another database option allows the statistics to be updated later auto-
matically; this is the AutoUpdateStatisticsAsync property. Unless you have
unusual needs, I’d suggest you keep the default value of these properties.

You can see the current state of your statistics options by running the script given in
the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT name AS DatabaseName
 , is_auto_create_stats_on AS AutoCreateStatistics
 , is_auto_update_stats_on AS AutoUpdateStatistics

Listing 5.2 Finding your default statistics options
www.it-ebooks.info

http://www.it-ebooks.info/

123Finding queries that have missing indexes
 , is_auto_update_stats_async_on
 AS AutoUpdateStatisticsAsync
FROM sys.databases
ORDER BY DatabaseName

All the default statistics properties are obtained from the sys.databases table. To
view the database entries in this table, you need VIEW ANY DATABASE server-level
permission. Alternatively, you’ll be able to see the rows only for the database in
which you’re running.

 An example of the type of output for this query is shown in figure 5.3. Looking at
the figure, you can see that all databases have AutoCreateStatistics and AutoUpdate-
Statistics enabled and AutoUpdateStatisticsAsync disabled.

 It’s important to keep your statistics up to date; this ensures that the optimizer can
make appropriate decisions based on the distribution and density of the current data
values and thus produce good-quality cached plans. I provided a SQL script to deter-
mine when your statistics were last updated and the amount of change they had
undergone since that time in chapter 3, section 3.10.

 In chapter 10 I’ll provide a script that automatically updates the index statistics in
an intelligent manner. The script updates only the statistics of the indexes whose data
has changed and does so using an intelligent sampling algorithm.

 In a similar way to finding queries that have missing statistics, you can find queries
with missing indexes. We’ll discuss these next.

5.2 Finding queries that have missing indexes
Indexes are essential for the normal running of production databases; without
indexes many database queries would be unfeasible. In chapter 3 we discussed the
DMVs for finding missing indexes. These DMVs provide an amalgamated view of
the various missing indexes, without reference to the individual queries involved.

Figure 5.3 Default statistics properties
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 5 Further query improvements
In the script discussed here, we’ll identify the individual SQL statements that the
missing indexes apply to.

 The script used to discover missing indexes is essentially the same as the one dis-
cussed previously that was used to find queries with missing statistics, but the LIKE
clause needs to be replaced with the following:

LIKE '%<MissingIndexes>%'

We already discussed the importance and consequences of missing indexes in
chapter 3. These are the additional benefits of searching the cached plans for mis-
sing indexes:

■ You have the ability to provide more filter criteria, for example, include only
SQL text that matches a certain pattern.

■ If you have SQL Server 2008, selecting the cached plan from the output gives a
visual display of the plan, including details of the missing index. If you right-
click the missing index text (in green) and select Missing Index Details, it will
create a script of the missing index.

■ You know these indexes belong to SQL that has run since the last SQL
server reboot.

In a similar way to finding queries that have missing indexes, you can find queries that
have implicit (silent) data type conversions. These can have a detrimental effect on
query performance and are discussed next.

5.3 Finding queries that have implicit data
type conversions
Typically, you use the same column name across different tables (and views) to denote
the same item of data. For example, you’d expect a column named DomainId to have
the same meaning and same data type in all the tables it’s part of. But databases often
contain columns with the same name that have been defined with different data types.
These mismatched columns can cause problems.

 Columns with the same name, in different tables, are typically used to link tables
together (as key/foreign keys). If the data types are not the same, the optimizer has
to do additional work to make the columns comparable. SQL Server will silently con-
vert one of the data types. This additional work is unnecessary overhead. In some
cases it can also mean an otherwise useful index is not used, resulting in a further
decrease in performance.

 An incorrectly defined column can affect data integrity, potentially invalidating
both the underlying table and any client applications because the data may be incon-
sistent and can be a source of application errors. For example, if a column should
have been defined as data type int but has been defined as a tinyint, a large value will
cause an overflow error.

 Having different data types for the same column has implications for maintain-
ability. Client applications (for example, stored procedures or ADO.NET clients)
www.it-ebooks.info

http://www.it-ebooks.info/

125Finding queries that have implicit data type conversions
often need to define the types. If the column has mismatched data types, which col-
umn’s data type should the client use without extending the problem into the cli-
ent arena?

5.3.1 Finding implicit data conversions

The script used to discover SQL queries that contain implicit data type conversions is
essentially the same as that used to find queries that have missing statistics, discussed
previously. But the LIKE clause needs to be replaced with the following:

LIKE '%CONVERT_IMPLICIT%'

As you examine your output, you might be surprised at the amount of background
work SQL Server does in ensuring that the data types become compatible; I know I
was. Where possible, these column type mismatches should be reconciled at the
source. If you allow me to digress from DMVs for a short while, in the next section I’ll
explain how you can do this.

5.3.2 Finding disparate column data types

You can use the INFORMATION_SCHEMA views to compare the different data types for
the same named column, across all the tables and views in a database. The script you
use to find columns with disparate data types is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 COLUMN_NAME
 ,[%] = CONVERT(DECIMAL(12,2),COUNT(COLUMN_NAME)*
 100.0 / COUNT(*)OVER())
INTO #Prevalence
FROM INFORMATION_SCHEMA.COLUMNS
GROUP BY COLUMN_NAME

SELECT DISTINCT
 C1.COLUMN_NAME
 , C1.TABLE_SCHEMA
 , C1.TABLE_NAME
 , C1.DATA_TYPE
 , C1.CHARACTER_MAXIMUM_LENGTH
 , C1.NUMERIC_PRECISION
 , C1.NUMERIC_SCALE
 , [%]
FROM INFORMATION_SCHEMA.COLUMNS C1
INNER JOIN INFORMATION_SCHEMA.COLUMNS C2 ON C1.COLUMN_NAME =
 C2.COLUMN_NAME
INNER JOIN #Prevalence p ON p.COLUMN_NAME = C1.COLUMN_NAME
WHERE ((C1.DATA_TYPE != C2.DATA_TYPE)
 OR (C1.CHARACTER_MAXIMUM_LENGTH != C2.CHARACTER_MAXIMUM_LENGTH)
 OR (C1.NUMERIC_PRECISION != C2.NUMERIC_PRECISION)

Listing 5.3 Finding disparate columns with different data types

Calculate prevalence
of column nameB

Do the columns
differ?C
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 5 Further query improvements
 OR (C1.NUMERIC_SCALE != C2.NUMERIC_SCALE))
ORDER BY [%] DESC, C1.COLUMN_NAME, C1.TABLE_SCHEMA, C1.TABLE_NAME

DROP TABLE #Prevalence

In this script, one table is involved in identifying columns with mismatched data types;
a brief description of it is shown in table 5.2.

The script first creates a temporary table, named #Prevalence, which contains
details of each column in any table in the current database as well as with the preva-
lence of that column name across the different tables B. The purpose of this table
is to give a weighting to the results, allowing the disparate columns to be sorted by
their prevalence.

 The main part of the script is a self join on INFORMATION_SCHEMA.COLUMNS,
on the COLUMN_NAME column. It selects rows that have the same column name but
differ in data type (and other precision-based details) C. The results are sorted by
the prevalence of the named column in descending order. Finally, the temporary
table is dropped.

 Figure 5.4 contains a sample of the type of output for this query.
 The results show how the data type for the same named column varies across

tables. Here you can see that the column DomainId has been defined variously as a
tinyint, smallint, int, and varchar. Some columns will be identified as having mis-
matched data types, but they’re really columns having the same name that describe
different things. In this case, it’s better to give them different names. For example,
the column IsYearEnd might be a bit in one table and a varchar(3) in another
table; the latter should be renamed IsYearEndChar. Some of the columns identified

Table 5.2 The table used to identify columns with mismatched data types

Table Description

INFORMATION_SCHEMA.COLUMNS Contains details about the columns of the tables/views
in a database

Figure 5.4 Mismatched data columns
www.it-ebooks.info

http://www.it-ebooks.info/

127Slower-than-normal queries
might be the result of a view’s definition being out of date. In this case, using
sp_refreshview will correct this problem.

 The identified mismatched columns should be corrected. It should be a simple
matter to identify the correct data type for a given column. It might take longer to cor-
rect any client’s applications that use the column.

ON A PREEMPTIVE NOTE This script can be used as part of a QA process to
ensure any columns in new or amended tables are defined consistently across
different tables, before being migrated to a production environment.

The script described here allows you to quickly identify which columns have mis-
matched data types across tables in a database. Recognizing and correcting these col-
umns will improve performance, data integrity, and maintainability.

 In a similar way to finding queries that have implicit data type conversions, you can
find queries that contain table scans. These may indicate inappropriate or missing
indexes, leading to a decrease in performance. Table scans are discussed next.

5.4 Finding queries that have table scans
Often, especially for larger tables, you hope to use indexes to quickly access the data
you require. Without indexes, the query has to scan the table to obtain its data. Identi-
fying and resolving the cause of these table scans should ensure that your indexes and
queries are correct.

 The script used to discover SQL queries that contain table scans is essentially the
same as that used to find queries that have missing statistics (discussed previously),
but the LIKE clause needs to be replaced with the following:

LIKE '%<TableScan%'

For relatively small tables, the optimizer may decide it’s cheaper to scan the table than
to use an index. A missing index or inappropriate indexes might also cause the opti-
mizer to use table scans. As an example of an inappropriate index, if a query needs to
retrieve a lot of data, some of which it can get from an index and the rest from the
underlying table, because it can be costly to repeatedly get the data from the underly-
ing table via an index (key) lookup, it’s often more appropriate to bypass the index
completely and scan the underlying table for the required data. To remedy this situa-
tion, it may be necessary to create a new index that contains the required data or con-
sider adding the required columns as INCLUDEd columns on the index.

 Searching the cached plans for table scans could prove useful in corroborating
that indexes are missing or are of an inappropriate type. It may also catch inappropri-
ate SELECT statements without a WHERE condition.

5.5 Slower-than-normal queries
As part of your normal monitoring, it makes sense to ensure that the runtime dura-
tion of your queries doesn’t deviate significantly from the expected norm. Identifying
www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5 Further query improvements
slower-than-normal queries will allow you to target your efforts and correct any perfor-
mance problems in a timely manner.

 A query can start to run slower for many reasons, including an increased number
of users (resulting in more waiting on resources), increased volume of data to process,
too much context switching for parallel queries, and slower hardware.

5.5.1 Finding queries that are running slower than normal

The script we use to identify queries that are running slower than normal is shown in
the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 100
 qs.execution_count AS [Runs]
 , (qs.total_worker_time - qs.last_worker_time) / (qs.execution_count - 1)
 AS [Avg time]
 , qs.last_worker_time AS [Last time]
 , (qs.last_worker_time - ((qs.total_worker_time - qs.last_worker_time) /
 (qs.execution_count - 1))) AS [Time Deviation]
 , CASE WHEN qs.last_worker_time = 0
 THEN 100
 ELSE (qs.last_worker_time - ((qs.total_worker_time -
 qs.last_worker_time) / (qs.execution_count - 1))) * 100
 END
 / (((qs.total_worker_time - qs.last_worker_time) /
 (qs.execution_count - 1.0))) AS [% Time Deviation]
 ,qs.last_logical_reads + qs.last_logical_writes + qs.last_physical_reads
 AS [Last IO]
 , ((qs.total_logical_reads + qs.total_logical_writes +
 qs.total_physical_reads) -
 (qs.last_logical_reads + last_logical_writes
 + qs.last_physical_reads))
 / (qs.execution_count - 1) AS [Avg IO]
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS [DatabaseName]
INTO #SlowQueries
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.plan_handle) qt
WHERE qs.execution_count > 1
 AND qs.total_worker_time != qs.last_worker_time
ORDER BY [% Time Deviation] DESC

SELECT TOP 100 [Runs]
 , [Avg time]
 , [Last time]
 , [Time Deviation]

Listing 5.4 Finding queries that are running slower than normal

Get raw
values

B

Calculate IO Deviation
and % IO DeviationC
www.it-ebooks.info

http://www.it-ebooks.info/

129Slower-than-normal queries
 , [% Time Deviation]
 , [Last IO]
 , [Avg IO]
 , [Last IO] - [Avg IO] AS [IO Deviation]
 , CASE WHEN [Avg IO] = 0
 THEN 0
 ELSE ([Last IO]- [Avg IO]) * 100 / [Avg IO]
 END AS [% IO Deviation]
 , [Individual Query]
 , [Parent Query]
 , [DatabaseName]
INTO #SlowQueriesByIO
FROM #SlowQueries
ORDER BY [% Time Deviation] DESC

SELECT TOP 100
 [Runs]
 , [Avg time]
 , [Last time]
 , [Time Deviation]
 , [% Time Deviation]
 , [Last IO]
 , [Avg IO]
 , [IO Deviation]
 , [% IO Deviation]
 , [Impedance] = [% Time Deviation] - [% IO Deviation]
 , [Individual Query]
 , [Parent Query]
 , [DatabaseName]
FROM #SlowQueriesByIO
WHERE [% Time Deviation] - [% IO Deviation] > 20
ORDER BY [Impedance] DESC

DROP TABLE #SlowQueries
DROP TABLE #SlowQueriesByIO

Here one DMV and one DMF are used to identify the queries that are running slower
than normal. A brief description of each is given in table 5.3.

By joining the DMV and DMF, we obtain enough information to identify the queries
that are running slower than normal, across all the databases on the server. The DMV
sys.dm_exec_query_stats plan_handle is passed to the DMF sys.dm_exec_sql_text to
retrieve the text of the SQL query. We use a common pattern to extract the Individual
Query from the Parent Query.

Table 5.3 DMV/DMF to identify queries that are running slower than normal

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle or
a plan_handle

Calculate
Impedance

D

www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 5 Further query improvements
 The _elapsed_time columns record how long the query took, taking into account
any waiting on resources. The _worker_time columns record how long the query took,
ignoring any waiting on resources; instead, they’re concerned only with the time
spent using the CPU.

 In this script, we’ll look only at queries that are slower based on the _worker_time
columns B. This will allow us to ignore many of the variable factors that affect query
duration, allowing us instead to create and discuss a simplified script to quickly deter-
mine whether a query is running slower than normal, based on the amount of CPU it
has used.

 To determine whether a query is running slower than normal, we need to calculate
the average duration of the query and compare it to its last run value, adjusted for the
amount of data it has processed C.

 The number of runs (execution_count) and the total worker time (total_worker_
time) both include data relating to the last run. In order to create a more representa-
tive average, the number of runs is reduced by 1, and the total worker time has the last
run time subtracted from it.

 The average duration of the query is calculated by subtracting the last_worker_
time from the total_worker_time and dividing the result by execution_count – 1.

 The algorithm used to determine whether a query is running slower than aver-
age is

%Slower = (LAST – AVG) x 100 / AVG

where LAST represents the duration of the last query and AVG represents the average
duration of the query.

 For example, if the average query duration (AVG) is 40 ms, and the last query dura-
tion (LAST) is 160 ms, then

%Slower = (160 – 40) x 100 / 40 = 300%

The duration of a query is affected by the amount of data it processes; this volume of
data is reflected in the various I/O columns of sys.dm_exec_query_stats. This utility
calculates the slowness of a query (Impedance) by combining the duration of the
query with the amount of I/O performed D. Again, the total I/O values include the
last run values and need to be adjusted.

 To see the SQL text of the Individual Query statement along with its Parent Query,
we call the Dynamic Management Function (DMF) sys.dm_exec_sql_text, passing it
the query’s plan_handle as the function parameter. We can extract the Individual
Query using the statement start and end offset values that are part of the DMV
sys.dm_exec_query_stats. The DMF sys.dm_exec_sql_text contains the id of the data-
base the query related to; this is also shown. Note that the WHERE clause selects only
queries that have been executed at least twice.

 For maintainability, the calculation of % IO deviation is separated from the main
query. The data is sorted by Impedance to show the TOP 100 queries running
www.it-ebooks.info

http://www.it-ebooks.info/

131Slower-than-normal queries
slower than normal. This is a reflection of time deviation, taking into account IO
deviation D.

 An example of the type of output for this query is given in figure 5.5.

5.5.2 The importance of queries that are running slower than normal

The script described here allows you to quickly identify which queries are running
slower than expected, after taking into account the volume of data processed.

 Because this script concerns itself with _worker_time rather than _elapsed_time,
you can ignore many of the reasons why the query might be running slower (for
example, concurrency and blocking) and concentrate on why the query is using more
CPU (that is, worker_time) to fulfill its needs.

 If many of the queries to be recompiled have a large impedance value, but their
absolute time using the CPU is relatively small, it might be sensible to include only
queries that have a duration above a certain threshold. You can achieved this by add-
ing a filter to the WHERE clause of the first query in listing 5.4, for example, to include
queries where their last run exceeded five seconds on the CPU:

AND qs.last_worker_time > 5000000

Perhaps the most common reason why a query starts to run slower (often sud-
denly) relates to parameters sniffing. Here the query plan is optimized based on the
value of the parameters when the query is first used. You can imagine that a param-
eter that retrieves only a few rows would produce a different plan than a parameter
that retrieves many rows.

 Various solutions exist to create cached plans that are more optimal for the passed
parameters; these are shown in table 5.4.

Table 5.4 Options for improving cached plans

Option Example

Execute the stored procedure with the RECOM-
PILE option; this doesn’t replace the query’s
current cached plan.

EXEC sprocName WITH RECOMPILE

Figure 5.5 Output showing queries taking longer than normal to run
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 5 Further query improvements
Let’s change tack now and look at stored procedures that aren’t used. Having them in
the database has implications for maintenance and analysis.

5.6 Unused stored procedures (2008 only)
When you undertake analysis on database systems, such as determining the effect of
changing a column from 20 characters to 50 characters in length, you often have to
scan, search, and evaluate many objects (for example, tables and stored procedures).
Having extraneous objects only complicates an already difficult task. SQL Server 2008
has a DMV named sys.dm_exec_procedure_stats that records performance statistics
for cached stored procedures.

 Examining this DMV will allow you to determine how often a stored procedure is
run. Conversely, it can also be used indirectly to determine which stored procedures
aren’t used.

Add WITH RECOMPILE to the body of the stored
procedure signature; this causes the stored pro-
cedure to be recompiled on every usage.

CREATE PROC sprocName WITH
RECOMPILE

Use the optimizer hint RECOMPILE on an Indi-
vidual Query within a stored procedure.

SELECT col3 FROM table1 WHERE
col3 = @param1 OPTION (RECOMPILE)

Use the optimizer hint OPTIMIZE FOR. This
allows you to create a plan based on more typi-
cal parameter values.

SELECT col3 FROM table1 WHERE
col3 = @param1 OPTION
(OPTIMIZE FOR (@param1=71))

Use plan guides. This allows you to reuse a
known good query plan and provides a degree
of stability.

Should WITH RECOMPILE be used by default for long-running queries?
I’ve often wondered if long-running queries and stored procedures should by default
contain the WITH RECOMPILE option. With queries that run quickly, the amount of
time spent recompiling the query might make up a significant amount of the que-
ries’ time. But with long-running queries, for example, reporting queries, the
amount of time spent in recompilation becomes increasingly less important as the
query duration increases.

It really depends on how much the data has changed since the statistics
were last updated, together with the initial parameters used when the plan
was first compiled.

Because data can change without the statistics being automatically updated, and
because the first-supplied parameters to a routine might be atypical, it makes
sense to investigate using the WITH RECOMPILE option on long-running queries.

Table 5.4 Options for improving cached plans (continued)

Option Example
www.it-ebooks.info

http://www.it-ebooks.info/

133Unused stored procedures (2008 only)
5.6.1 Finding unused stored procedures

Unused stored procedures, like unused indexes, unnecessarily increase the complex-
ity of your database system. Running the SQL script given in the following listing will
identify these unused stored procedures, ordered by name.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT s.name, s.type_desc
FROM sys.procedures s
LEFT OUTER JOIN sys.dm_exec_procedure_stats d
 ON s.object_id = d.object_id
WHERE d.object_id IS NULL
ORDER BY s.name

In the listing, one DMV and one system table are involved in identifying unused stored
procedures. A brief description of each is given in table 5.5.

Joining the DMV and system table gives us enough information to determine which
stored procedures aren’t used in the current database in which the query is run. The
DMV sys.dm_exec_procedure_stats and the system table sys.procedures are joined on
their common key column object_id. Because we want to know which stored proce-
dures are in the sys.procedures table but not in the sys.dm_exec_procedure_stats
DMV, we issue a LEFT OUTER JOIN, thus preserving the left-hand table (sys.proce-
dures). We filter out rows that have an entry in the sys.dm_exec_procedure_stats DMV
by using a WHERE clause that checks for NULL B in the corresponding right-hand
object (sys.dm_exec_procedure_stats). This is a fast and common pattern for deter-
mining what’s in one table but not another. The results are ordered, for convenience,
by stored procedure name.

 Sample output for this query is shown in figure 5.6.
 As with finding unused indexes, it’s important to remember that DMVs contain

only data since the last reboot. It may be that the stored procedure (and index) aren’t
in the DMV because they haven’t been used since the last reboot.

 Taking that warning into account, it makes sense to remove (or at least archive)
the unused stored procedures. This should reduce the schema complexity and help
with any future maintenance analysis.

Listing 5.5 Finding unused stored procedures

Table 5.5 The DMV/system table used to identify unused stored procedures

DMV/table Description

sys.dm_exec_procedure_stats Contains aggregated performance statistics for cached stored
procedures

sys.procedures Contains a row for each object that is a procedure, for example,
SQL stored procedure, extended stored procedure, CLR stored
procedure, and replication filter procedure

Determine which
stored procedures
haven’t run

B

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 5 Further query improvements
Sometimes when investigating production problems, it’s useful to know which SQL
queries are running. This helps in solving looping problems or concurrency prob-
lems. I’ll present a script next that will show which SQL queries are run over a given
time period.

5.7 Looking for SQL queries run during a specific interval
You can use the DMV snapshot delta pattern discussed in chapter 2 to discover which
queries run over a given time period. Knowing which queries run at regular time peri-
ods can be useful, allowing you to ensure that related objects (for example, indexes)
are optimized prior to their use. It might also allow you to discover the causes of any
concurrency problems or looping and assist in their resolution.

5.7.1 What runs over a given time period?

Knowing what’s running over a given time interval can be a great starting point in
diagnosing performance problems. Running the SQL script given in the following
listing will identify which queries are running over a given time period. In this
example, the time period is five minutes; you may want to alter this time interval to
suit your needs.

--ThisRoutineIdentifier99

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT sql_handle, plan_handle, total_elapsed_time
 , total_worker_time, total_logical_reads, total_logical_writes
 , total_clr_time, execution_count, statement_start_offset
 , statement_end_offset
INTO #PreWorkSnapShot
FROM sys.dm_exec_query_stats

WAITFOR DELAY '00:05:00'

SELECT sql_handle, plan_handle, total_elapsed_time
 , total_worker_time, total_logical_reads, total_logical_writes
 , total_clr_time, execution_count, statement_start_offset
 , statement_end_offset

Listing 5.6 Which queries run over a given time period

Figure 5.6
Output showing unused stored procedures

Get pre-work
snapshot

B

Time delay
period

C
Get post-work
snapshot

D

www.it-ebooks.info

http://www.it-ebooks.info/

135Looking for SQL queries run during a specific interval
INTO #PostWorkSnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) -
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qp.query_plan
FROM #PreWorkSnapShot p1
RIGHT OUTER JOIN
#PostWorkSnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(p2.plan_handle) qp
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
 AND qt.text NOT LIKE '--ThisRoutineIdentifier99%'
ORDER BY [Duration] DESC

DROP TABLE #PreWorkSnapShot
DROP TABLE #PostWorkSnapShot

This script uses one DMV and two DMFs to identify which queries run in a given time
period. They’re described briefly in table 5.6.

Table 5.6 DMV/DMFs that identify the queries that run in a given time period

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle or
plan_handle

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by a
given plan_handle

Extract deltaE

RIGHT
OUTER JOIN

F

www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 5 Further query improvements
The script takes a pre-work snapshot of the relevant columns of the sys.dm_exec_
query_stats DMV B. It then waits for a given time period to pass C before taking a
similar post-work DMV snapshot D. It then calculates the difference between the
snapshots E and joins to the sys.dm_exec_sql_text and sys.dm_exec_query_plan
DMFs to obtain additional useful information. A RIGHT OUTER JOIN is used to join
the pre-work and post-work snapshots F; this is because some of the SQL queries may
not be in the initial pre-work snapshot.

 The joining of the pre-work snapshot, post-work snapshot, and the DMFs provides us
adequate information to identify the queries that run in a given time period, across all
the databases on the server. The pre-work snapshot and post-work snapshot are joined
on their common key columns plan_handle, sql_handle, statement_start_offset, and
statement_end_offset.

 The query’s sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the
text of the SQL query. Similarly, the query’s plan_handle is passed to the DMF sys.dm_
exec_query_plan to retrieve the cached plan of the query. We use a common pattern
to extract the Individual Query, which the timings relate to, from the Parent Query.
An example of the type of output for this query is shown in figure 5.7.

 The results in figure 5.7 are sorted by query duration. You can amend the script to
sort by the column you’re interested in. In addition, you might want to filter the
results by database or some text pattern matching.

NOTE The script starts with the literal --ThisRoutineIdentifier99; this allows
our diagnostics script itself to be filtered out of subsequent processing.

It can prove quite illuminating to take DMV snapshots at regular time periods and
store the results into temporary tables for later analysis. Using this method, it’s possi-
ble to determine which queries run, which indexes are used, when most I/O occurs,
and when most blocking occurs between the given time periods.

 This particular script could be helpful in determining the effect of moving from
one version of SQL Server to another. You could run a batch of SQL queries on the
current version of SQL Server and record the results in a datastore. Then you could
upgrade the version of SQL Server and run the batch of SQL again, storing it in

Figure 5.7 Output showing the queries that run in a given time period
www.it-ebooks.info

http://www.it-ebooks.info/

137Relationships between DMV snapshot deltas
another datastore. Finally, you could match the two datastores on the columns of the
database, Individual Query and Parent Query. This will allow you to determine
whether the metrics have changed between the two versions, helping you make the
decision to upgrade.

 In chapter 11 I’ll provide a script that can be used to determine the effect of mov-
ing from one version of SQL Server to another, allowing comparison on metrics at the
database, batch (or stored procedure), or individual statement level.

5.8 Relationships between DMV snapshot deltas
Up to now we’ve tended to look at DMV changes in isolation. Although this is fine
while we gain an understanding of specific areas, we can get a better understanding of
the impact of queries if we examine the effect of our queries on several DMVs at the
same time.

 In this section, we report on several DMV snapshots to illustrate the combined
effect of our queries. This is useful as a starting point in correlating the changes in the
different DMVs.

5.8.1 Amalgamated DMV snapshots

Often performance problems have an effect on multiple DMVs concurrently. The out-
put from the DMVs can be used to corroborate each other. Running the SQL script
given in listing 5.7 will report how various DMVs change over a given time interval. In
this example, the time period is five minutes; you may want to alter this time interval
to suit your needs. The DMVs examined are missing indexes, query stats, performance
counters, and wait statistics.

--ThisRoutineIdentifier

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 index_group_handle, index_handle
 , avg_total_user_cost, avg_user_impact, user_seeks, user_scans
INTO #PreWorkMissingIndexes
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s
 ON s.group_handle = g.index_group_handle

Assessing the effect of running a SQL query
The current script allows you to determine which SQL queries run in a given time
period. You can amend that script to determine the effect of a given SQL query or
batch on the DMVs, for example, how much I/O is used or how long it takes to run.
You’d need to replace the line of code that has the WAITFOR DELAY command with
the SQL query or batch you want to determine the effect of.

Listing 5.7 Amalgamated DMV snapshots

Pre-work
snapshots

B

Missing
indexes
countersC
www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 5 Further query improvements
SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PreWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT
 wait_type, waiting_tasks_count
 , wait_time_ms, max_wait_time_ms, signal_wait_time_ms
INTO #PreWorkWaitStats
FROM sys.dm_os_wait_stats

WAITFOR DELAY '00:05:00'

SELECT wait_type, waiting_tasks_count, wait_time_ms
 , max_wait_time_ms, signal_wait_time_ms
INTO #PostWorkWaitStats
FROM sys.dm_os_wait_stats

SELECT [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PostWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT index_group_handle, index_handle
 , avg_total_user_cost, avg_user_impact, user_seeks, user_scans
INTO #PostWorkMissingIndexes
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s
 ON s.group_handle = g.index_group_handle

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) -
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2

Query stats
countersD

OS countersE

Wait stats
counters

F

Put your query or
SQL batch here
(or a time delay)

G

Post-work
snapshotsH

Calculate
snapshot deltas

I

www.it-ebooks.info

http://www.it-ebooks.info/

139Relationships between DMV snapshot deltas
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
 AND qt.text NOT LIKE '--ThisRoutineIdentifier%'

SELECT
 p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) AS wait_time_ms
 , p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)
 AS signal_wait_time_ms
 , ((p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0))
 - (p2.signal_wait_time_ms
 - ISNULL(p1.signal_wait_time_ms, 0))) AS RealWait
 , p2.wait_type
FROM #PreWorkWaitStats p1
RIGHT OUTER JOIN
#PostWorkWaitStats p2 ON p2.wait_type = ISNULL(p1.wait_type, p2.wait_type)
WHERE p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) > 0
 AND p2.wait_type NOT LIKE '%SLEEP%'
 AND p2.wait_type != 'WAITFOR'
ORDER BY RealWait DESC

SELECT
 ROUND((p2.avg_total_user_cost - ISNULL(p1.avg_total_user_cost, 0))
 * (p2.avg_user_impact - ISNULL(p1.avg_user_impact, 0)) *
 ((p2.user_seeks - ISNULL(p1.user_seeks, 0))
 + (p2.user_scans - ISNULL(p1.user_scans, 0))),0)
 AS [Total Cost]
 , p2.avg_total_user_cost - ISNULL(p1.avg_total_user_cost, 0)
 AS avg_total_user_cost
 , p2.avg_user_impact - ISNULL(p1.avg_user_impact, 0) AS avg_user_impact
 , p2.user_seeks - ISNULL(p1.user_seeks, 0) AS user_seeks
 , p2.user_scans - ISNULL(p1.user_scans, 0) AS user_scans
 , d.statement AS TableName
 , d.equality_columns
 , d.inequality_columns
 , d.included_columns
FROM #PreWorkMissingIndexes p1
RIGHT OUTER JOIN
#PostWorkMissingIndexes p2 ON p2.index_group_handle =
 ISNULL(p1.index_group_handle, p2.index_group_handle)
 AND p2.index_handle =
 ISNULL(p1.index_handle, p2.index_handle)
INNER JOIN sys.dm_db_missing_index_details d
 ON p2.index_handle = d.index_handle
www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 5 Further query improvements
WHERE p2.avg_total_user_cost - ISNULL(p1.avg_total_user_cost, 0) > 0
 OR p2.avg_user_impact - ISNULL(p1.avg_user_impact, 0) > 0
 OR p2.user_seeks - ISNULL(p1.user_seeks, 0) > 0
 OR p2.user_scans - ISNULL(p1.user_scans, 0) > 0
ORDER BY [Total Cost] DESC

SELECT
 p2.object_name, p2.counter_name, p2.instance_name
 , ISNULL(p1.cntr_value, 0) AS InitialValue
 , p2.cntr_value AS FinalValue
 , p2.cntr_value - ISNULL(p1.cntr_value, 0) AS Change
 , (p2.cntr_value - ISNULL(p1.cntr_value, 0)) * 100 / p1.cntr_value
 AS [% Change]
FROM #PreWorkOSSnapShot p1
RIGHT OUTER JOIN
#PostWorkOSSnapShot p2 ON p2.object_name =
 ISNULL(p1.object_name, p2.object_name)
 AND p2.counter_name = ISNULL(p1.counter_name, p2.counter_name)
 AND p2.instance_name = ISNULL(p1.instance_name, p2.instance_name)
WHERE p2.cntr_value - ISNULL(p1.cntr_value, 0) > 0
 AND ISNULL(p1.cntr_value, 0) != 0
ORDER BY [% Change] DESC, Change DESC

DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot
DROP TABLE #PostWorkWaitStats
DROP TABLE #PreWorkWaitStats
DROP TABLE #PreWorkOSSnapShot
DROP TABLE #PostWorkOSSnapShot
DROP TABLE #PreWorkMissingIndexes
DROP TABLE #PostWorkMissingIndexes

The listing is an amalgamation of various DMV snapshot deltas that are discussed in
their relevant sections of this book. Rather than discuss each DMV snapshot in detail
here, including the SQL involved, I ask you to read the relevant entry in the other sec-
tions of this book.

 In essence, various pre-work DMV snapshots are taken B. These include DMVs that
relate to

■ Missing indexes C
■ Query stats D
■ OS counters E
■ Wait stats F

Next, you should run the query that you want to gather DMV information about G.
This can be a single SQL statement, a batch of SQL, or a time delay. After this, the post-
work DMV snapshots are taken H, and finally, the various DMV snapshot deltas are cal-
culated I.

 In our example, we use a time period; this allows a given time period to elapse
before we take a post-work snapshot. This will allow us to determine what’s happen-
ing over given time periods and could be extended if the results were captured

Tidy up
www.it-ebooks.info

http://www.it-ebooks.info/

141Relationships between DMV snapshot deltas
periodically into a datastore for further processing. If you know which SQL queries
are running at regular times on your server, it’s possible to preempt the processing
and provide optimal conditions for your SQL queries to run (for example, provide
up-to-date statistics).

 Notice that the script start with the literal --ThisRoutineIdentifier. This is done so
we can filter out the queries involved in our particular diagnostics script from the
query stats DMV. A RIGHT OUTER JOIN is used to join the various pre-work and post-
work snapshots, and this is because some of the SQL queries may not be in the initial
pre-work snapshot.

 You could extend the list of DMVs involved in the snapshots with your favor-
ite DMVs. Depending on your particular interests, you might want to change the
sort order of the queries in the query DMV to sort by number of reads or writes,
time blocked, or time on CPU, according to what aspect of the query you’re inter-
ested in.

 An example of the type of output for this query is given in figure 5.8.
 The next step would be to correlate the various DMV snapshots against each other.

Some example correlations that could be expected include the following:

■ A query that has a large number of reads to perhaps have missing indexes
or inappropriate index usage (for example, it’s using an index scan instead
of a seek)

■ Queries that have a large Time blocked value to relate to the wait_type in the
waitstats DMV delta

■ Individual queries that are called often and involve temporary tables, resulting
in a high number of recompiles (shown in the performance counter DMV snap-
shot delta)

Figure 5.8 Output showing various DMV snapshot deltas
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 5 Further query improvements
It’s appropriate here to remember the limitations of DMVs. The DMVs will record
information about all queries that are currently running on the server. If you’re
interested in only a given database, you can filtering the results to include queries
only for that database, or run the query under investigation when you know noth-
ing else is running on the database or server, or perhaps run the queries on your
own server.

5.9 Currently running queries
Previously we’ve looked at static historic DMV data; now we’ll look at which SQL que-
ries are currently running. This can be useful when you’re trying to debug what’s hap-
pening on your database servers. Often, running this script when a problem is
occurring, for example, when a query is running slowly, will illuminate the underlying
cause of the problem as well as give you greater insight into your processing.

5.9.1 What’s running now?

Sometimes we get calls from users informing us that their queries don’t seem to be
progressing quickly enough. In these cases it makes sense to examine what’s currently
running on the server. Running the SQL script given in the following listing will iden-
tify what’s currently running on the server.

SELECT
 es.session_id, es.host_name, es.login_name
 , er.status, DB_NAME(database_id) AS DatabaseName
 , SUBSTRING (qt.text,(er.statement_start_offset/2) + 1,
 ((CASE WHEN er.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE er.statement_end_offset
 END - er.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , es.program_name, er.start_time, qp.query_plan
 , er.wait_type, er.total_elapsed_time, er.cpu_time, er.logical_reads

 , er.blocking_session_id, er.open_transaction_count, er.last_wait_type
 , er.percent_complete
FROM sys.dm_exec_requests AS er
INNER JOIN sys.dm_exec_sessions AS es ON es.session_id = er.session_id
CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) AS qt
CROSS APPLY sys.dm_exec_query_plan(er.plan_handle) qp
WHERE es.is_user_process=1
 AND es.session_Id NOT IN (@@SPID)
ORDER BY es.session_id

In the listing, two DMVs and two DMFs are involved in identifying which queries are
currently running. A brief description of each is given in table 5.7.

Listing 5.8 What queries are running now

Who’s running
a queryB

What they’re
doingC

What resources
are used

 D

Miscellaneous
but useful E
www.it-ebooks.info

http://www.it-ebooks.info/

143Currently running queries
The columns we report on tell us who’s running the query B, what queries they’re
running C, whether the query is running or waiting on a resource D, and details of
any blocking or transactions E.

 The joining of the DMVs and DMFs provides us with enough information to deter-
mine which SQL queries are currently running, across all databases on the server. The
DMVs sys.dm_exec_requests and sys.dm_exec_sessions are joined on their common
key column session_id. The request’s sql_handle is passed to the DMF sys.dm_exec_
sql_text to retrieve the text of the SQL query. Similarly, the request’s plan_handle is
passed to the DMF sys.dm_exec_query_plan to retrieve the cached plan of the query.
We use a common pattern to extract the Individual Query from the Parent Query.

 The query is concerned only with requests that belong to users, as opposed to
system requests; thus we include requests where the column is_user_request is equal
to 1. We also filter out the currently running script from the results.

 An example of the type of output for this query is provided in figure 5.9.
 The output can prove useful in determining the cause of any conflicts. It can also

be useful in ensuring whether a given point in a SQL batch has passed. Running this
script periodically, perhaps into a semi-permanent table, will allow you to make deci-
sions about your SQL batch and possibly avoid concurrency problems. It’s possible to
amend the script to include only those SQL queries that are running on the database
you’re interested in.

Table 5.7 DMVs/DMFs to identify queries that are running now

DMV/DMF Description

sys.dm_exec_requests Contains details about each request executing on SQL Server

sys.dm_exec_sessions Contains details about each authenticated session on SQL
Server

sys.dm_exec_query_plan DMF that returns the cached plan, in XML format, identified by
a given plan_handle

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan_handle

Figure 5.9 Output showing which SQL queries are currently running
www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 5 Further query improvements
5.10 Recompiled queries
One of the advantages of creating a cached plan is that the data access mechanism for
the query is determined once and reused. This typically saves time when the queries
run subsequently, because it can reuse the already-created cached plan.

 When you run one or more SQL statements, or indeed a stored procedure, each
SQL statement is represented in the cached plan. If a statement needs to be recom-
piled, only the relevant statements are recompiled.

 Recompilation takes additional time and can be responsible for CPU spikes and
blocking. You can examine the DMVs to determine which individual SQL statements
have been recompiled the most, with a view to determining the cause of the recompi-
lation and finding ways of reducing it.

 Sometimes, for example, when you want to run a long-running reporting query,
recompiling a query may have a positive effect on performance. This is especially true
where the distribution of the underlying data differs significantly from the data that
was present when the cached plan was created. You can use the script we created in
chapter 3, section 3.10, to help determine whether the underlying data has changed
noticeably. Earlier in this chapter we discussed various methods of explicitly recompil-
ing a query.

 A great article covering many aspects of cached plans titled “Plan Caching in SQL
Server 2008” is available from Microsoft; you can find it at mng.bz/8BX7. It also con-
tains much that’s applicable to SQL Server 2005.

5.10.1 Finding the most-recompiled queries

Although there are valid reasons for recompiling queries, in most cases you’d hope
to be able to reuse an existing cached plan. Examining the queries that are recom-
piled the most can highlight why the query is being recompiled, providing an
opportunity to reduce it and improve performance. Running the SQL script given
in the following listing will identify the top 20 most-recompiled queries, ordered by
plan_generation_num (which indicates the number of times a query has been
recompiled) B.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 qs.plan_generation_num
 , qs.total_elapsed_time
 , qs.execution_count
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]

Listing 5.9 Determining your most-recompiled queries
www.it-ebooks.info

http://www.it-ebooks.info/

145Recompiled queries
 , DB_NAME(qt.dbid) AS DatabaseName
 , qs.creation_time
 , qs.last_execution_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
ORDER BY plan_generation_num DESC

In this script, one DMV and one DMF are used to identify the most-recompiled queries;
a brief description of each is given in table 5.8.

The sys.dm_exec_query_stats DMV contains the query’s sql_handle, which is passed to
the DMF sys.dm_exec_sql_text to retrieve the text of the SQL query. To report on the
most-recompiled queries, we sort the results by the plan_generation_num in descend-
ing order. The column execution_count represents the number of times the query
has been executed since it was last recompiled.

 Figure 5.10 shows sample output for this query.
 A SQL statement might be recompiled for many reasons; we discussed many of

these in this chapter, in the section “Slower-than-normal queries.” In addition, SQL
statements that contain temporary tables will be recompiled. This is to be expected
because the optimizer needs to know about the distribution and density of data values
in the temporary table in order to create a good cached plan. Changing various envi-
ronmental variables, via your SQL connection, may cause a recompilation. Changes in
the objects referenced by the plan, for example, dropping an index, may also cause
the plan to be recompiled.

Table 5.8 DMV/DMF to identify the most recompiled queries

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan handle

Sort by number of
recompilations

B

Figure 5.10 Output showing the most-recompiled queries
www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 5 Further query improvements
5.11 Summary
This chapter discussed some of the more peripheral questions you might want
answered about your database. We discussed how to discover queries that have missing
statistics, missing indexes, table scans, and mismatched data types, together with the
implications these may have on performance.

 You saw how you can identify queries that are running slower than normal and
learned various possible solutions to remedy these. We also discussed a DMV-only
version of a routine that identifies which SQL queries are currently running. This
should prove useful in debugging production systems that involve blocking and con-
currency issues.

 Because SQL queries affect multiple DMVs when they’re run, it made sense to
examine the combined effect of these changed DMVs and discuss any relationship you
could expect.

 Having looked at indexes and cached plans in detail, next we’ll look at the perfor-
mance of databases from a different perspective. We’ll examine why the queries are
unable to run. This should highlight troublesome databases that need further investi-
gation, along with the reasons for the suboptimal performance. Although this
approach is separate from using cached plans and indexes, you’ll find they can be
combined to give a more complete picture of the problem and potential solutions.
www.it-ebooks.info

http://www.it-ebooks.info/

Operating system DMVs
SQL Server provides several operating system–related DMVs that allow you to under-
stand, at the server level, why your queries are waiting. Investigating these in con-
junction with the SQL queries that are running should enable you to identify the
problem areas and provide solutions to improve your SQL queries. I’ll provide a
script to show your most common waits, both at the server level and those that
occur when you run a given SQL query or batch.

 Another DMV allows you to access the Windows internal performance counters
for various SQL Server–related objects. These performance counters provide infor-
mation on many aspects of Windows components. Inspecting these counters will
often highlight areas of concern that can be targeted for improvement.

 Correlating the wait types with various performance counters is a well-known
and much-used method of performance tuning. We’ll examine the causes of wait-
ing together with the changes in the performance counters to suggest reasons for
the problems and how to rectify them.

This chapter covers
■ Identifying why your queries are waiting
■ Obtaining performance counter information
■ Capturing DMV data periodically
147

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 6 Operating system DMVs
6.1 Understanding server waits
The previous two chapters discussed scripts that allow you to discover information
about poorly performing SQL at the query level. When a SQL query is executing,
the time it spends on the CPU is recorded in the column total_work_time in the
DMV sys.dm_exec_query_stats. In addition, there are times when the query is ready
to run but is unable to, for a variety of reasons, including waiting for I/O to com-
plete. At the query level, you can determine the amount of waiting from the differ-
ence between the total_elapsed_time and total_work_time columns in the sys.dm_
exec_query_stats DMV.

SQL Server also records the reason for any waiting at the server instance level, in
the sys.dm_os_wait_stats DMV. Inspecting this DMV will provide you with a high-level
view of the main causes of waiting on a given SQL Server; this will allow you to target
further investigation based on the prominent wait types.

 When a SQL query runs, it typically requires resources, for example, exclusive
access to a given set of data. If the query can’t run, perhaps because it doesn’t have
access to these resources, it enters a wait state. SQL Server keeps a record of this wait-
ing, by wait type, accumulated since the last reboot or clearing of the sys.dm_os_
wait_stats DMV. Inspecting this DMV provides you with a starting point for investigat-
ing the chief causes of any waiting.

 For your testing, it’s often convenient to reset the values in the sys.dm_os_
wait_stats DMV. It’s possible to clear this DMV using the following DBCC command:

DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR)

Alternatively, rather than resetting the DMV, which can be problematic on production
servers, you can deduce the effect of queries on the sys.dm_os_wait_stats DMV by cre-
ating a DMV snapshot delta. An example script to do this is described later in this
chapter, in section 6.3.

THE MEANING OF WAIT TYPES To decode the meaning of the various wait
types, what they mean, what problems they represent, and how these prob-
lems might be solved, I recommend you read the “SQL Server 2005 Waits
and Queues” white paper. Although the paper refers to SQL Server 2005,
it’s still applicable to SQL Server 2008. The white paper is available here:
mng.bz/8gl4.

6.2 Identifying your most common waits
When a SQL query is able to run but isn’t on the CPU, it’s waiting. SQL Server
keeps a record of these waits by wait type. Analyzing these wait types will pro-
vide you with a high-level indication of problematic resources that can be tar-
geted for improvement.

 When a query is waiting on a resource, its status is set to suspended. When the
resource that a waiting query had been waiting on becomes available, the query is
placed in a queue and enters a runnable status. But it still might take time before it
www.it-ebooks.info

http://www.it-ebooks.info/

149Identifying your most common waits
actually runs; this is because there may be other queries in the queue that have pro-
priety or the CPU is busy doing other work. The time the query spends waiting to run
while it’s in the queue is also recorded in the sys.dm_os_wait_stats DMV, in the col-
umn signal_wait_time_ms. It’s possible to determine the amount of time that was
spent waiting on a resource and the amount of time spent waiting to get onto the
CPU by subtracting the signal_wait_time_ms from the wait_time_ms. You can use this
to highlight CPU pressure, where the CPU is spending a large amount of time at or
near peak performance.

6.2.1 Why are you waiting?

Identifying the cause of your server’s waits is a great starting point for analyzing, at a
high level, why your queries are waiting and thus giving suboptimal performance.
Running the SQL script shown here will identify the top 20 causes of waiting on your
server instance, ordered by wait_time_ms B.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 wait_type, wait_time_ms, signal_wait_time_ms
 , wait_time_ms - signal_wait_time_ms AS RealWait
 , CONVERT(DECIMAL(12,2), wait_time_ms * 100.0 / SUM(wait_time_ms) OVER())
 AS [% Waiting]
 , CONVERT(DECIMAL(12,2), (wait_time_ms - signal_wait_time_ms) * 100.0
 / SUM(wait_time_ms) OVER()) AS [% RealWait]
FROM sys.dm_os_wait_stats
WHERE wait_type NOT LIKE '%SLEEP%'
 AND wait_type != 'WAITFOR'
ORDER BY wait_time_ms DESC

In the listing, you can see that one DMV is involved in identifying the most common
causes of waiting; a brief description of it is shown in table 6.1.

The script lists the top 20 wait types on the SQL Server, ordered by the time spent
waiting, in descending order. We filter out any waits that contain the word SLEEP
because these are not really waits in the context of our investigation. Similarly, we
filter out any WAITFOR wait types because these are intentional waits prescribed by
the developer. We use the OVER clause to calculate the percentages for a given wait
type relative to all the wait types. The columns output by the script are described in
table 6.2.

Listing 6.1 Why are you waiting?

Table 6.1 DMV for identifying the most common waits

DMV Description

sys.dm_os_wait_stats Contains information about all the waits encountered by threads of
execution

Order by time
spent waiting

B

www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 6 Operating system DMVs
The column wait_time_ms records the total time a given wait type spent waiting; this
includes both the original cause of the waiting (for instance, waiting on I/O to com-
plete) and the time it took to get the thread back onto the CPU to continue its work
(recorded separately as signal_wait_time_ms). Calculating the real time spent waiting
(in the column % RealWait) should give you an indication of any CPU pressures. You
can see this more clearly when there’s a big discrepancy in the values in the columns
% Waiting and % RealWait, for a given wait type.

 An example of the type of output for this query is shown in figure 6.1.
 The output in figure 6.1 shows that the most common wait type was CXPACKET,

which was responsible for more than half of the total wait time (50.94%) of all of
the different wait types shown. The difference between the columns % Waiting and
% RealWait are relatively minor, suggesting that in general this SQL Server’s CPU
was not under pressure.

 Although it’s possible to filter out some of the more innocuous wait types, for
example, SQLTRACE_BUFFER_FLUSH, I’ve included them here because they often
provide a marker against which you can infer the importance and impact of the

Table 6.2 Wait state column descriptions

Column Description

wait_type Name of the wait type.

wait_time_ms Total time spent waiting in milliseconds.

signal_wait_time_ms Total time spent waiting to get on the CPU, when no longer waiting on
original cause of wait.

RealWait Total time spent waiting on original resource. This is wait_time_ms less
signal_wait_time_ms.

% Waiting How much time this wait_type spent waiting as a percentage of all waits.

% RealWait How much time this RealWait spent waiting as a percentage of all waits.

Figure 6.1 Output showing the most common wait type
www.it-ebooks.info

http://www.it-ebooks.info/

151Identifying your most common waits
other wait types. For example, because SQLTRACE_BUFFER_FLUSH is typically an
inoffensive wait type, items that occur below it will typically have little importance.
Many of the wait types shown are relatively common; an overview of some of the
more common wait types is given next.

6.2.2 Common wait types

A list of some of the more common wait types, together with a description of their
meaning and an indication of the problem area they relate to, is given in table 6.3.

Table 6.3 Common wait types descriptions

Wait type Description

CXPACKET When a query runs in parallel, some of the threads finish before
others; these finished threads result in a waiting status of
CXPACKET. For OLAP systems CXPACKET waits are to be
expected, but if the value of this wait is over 10% of the total
waits, it may need correcting. For OLTP systems parallelism is
less important and may be detrimental to performance; if the
value of this wait is over 5% of the total waits, it may need cor-
recting. It’s possible to lower the Degree of Parallelism (DOP)
setting at either the server level or on individual queries to
reduce the amount of parallelism. Alternatively or additionally,
you might want to alter the value of the Cost Threshold for Paral-
lelism setting.

LCK_x Occurs when a task is waiting on a locked resource. Indicates
blocking problems. Often a side effect of inappropriate transaction
isolation level or long-running transactions. Can also relate to
memory shortage or excessive I/O.

ASYNC_IO_COMPLETION Occurs while waiting for asynchronous I/O to finish. Disk subsys-
tem may be suboptimal. Consider moving files/file groups to less-
used drives. Investigate queries with the most I/O and longest
blocking. Consider applying appropriate missing indexes (knowing
which queries have run). Check for index or table full scan perfor-
mance counters.

ASYNC_NETWORK_IO Occurs on network writes when task is blocked behind the net-
work. May be due to network issues between SQL Server and the
client application or because the application is processing
results inefficiently.

LATCH_x These are short-term synchronization objects (lightweight locks).
Often caused by internal contention on internal caches, cached
data pages, and other in-memory objects (as opposed to I/O buf-
fer). Often indicates memory problems.

PAGELATCH_x Latch used to synchronize access to buffer pages. Typically indi-
cates cache contention.

PAGEIOLATCH_x Occurs while waiting for data page I/O operations to complete.
I/O system is busy. Typically represents disk-to-memory problems.
www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 6 Operating system DMVs
A little later in this chapter, in section 6.9, we’ll link these common wait types with
changes in the performance counters. This is a well-known method of investigating
performance problems. In essence, you should use your most-common wait types to
select a set of performance counters (often looking at queues in particular) to high-
light and corroborate your performance problems.

 Because the DMV sys.dm_os_wait_stats accumulates data, it may make sense to use
DMV snapshots to determine the effect of a given query or what’s happening during a
given time period. An example of this is given next.

6.3 Identifying your most common waits—snapshot
version
The DMV sys.dm_os_wait_stats is useful for discovering the cumulative effect of the
causes of waiting since SQL Server was last rebooted, restarted, or cleared pro-
grammatically. But being cumulative, it doesn’t record trend or discreet time inter-
val information. You can use the DMV snapshot approach given in chapter 2
(“Common patterns”) to determine the specific waits that occur when you run a
given SQL query or batch of SQL or indeed to determine the waits over a given
time period. This should allow you to highlight, and target for investigation and
improvement, any waits that occur while you’re running specific SQL queries or for
a given time interval.

 There’s a caveat with this approach (and some proposed solutions too). The DMV
sys.dm_os_wait_stats records information at the server level and thus will record all
other activity on the server. This may or may not be a problem depending on how
these other queries influence the wait type values. It’s possible to reduce the effect of

IO_COMPLETION Due to slow client response. Occurs while waiting for non-data
page I/O operations to complete. Disk subsystem may be subopti-
mal. Investigate bulk inserts. Check for growth in database files.
Check for queries with most I/O. Investigate missing indexes.
Check sys.dm_io_virtual_file_stats to target specific files (and
thus the underlying database tables) for stalls.

WRITELOG Occurs while waiting for the log flush to finish. These typically
occur when a transaction commits or a checkpoint is taken.
Check log files on sys.dm_io_virtual_file_stats for stalls. Consider
moving log files to less-used disks.

SOS_SCHEDULER_YIELD Occurs when a task voluntarily yields the scheduler to another
task. A high value often indicates CPU pressure.

SQLTRACE_BUFFER_FLUSH Occurs when the SQL Trace task pauses between flushes. If user-
initiated traces aren’t active, this value represents the default
trace. This can be used as a benchmark against which the impact
of other waits can be compared.

Table 6.3 Common wait types descriptions (continued)

Wait type Description
www.it-ebooks.info

http://www.it-ebooks.info/

153Identifying your most common waits—snapshot version
external influences by running your queries on a standalone server or at a time when
you know other queries won’t be running.

6.3.1 Why are you waiting? (snapshot version)

Because the wait states DMV is accumulative, if you want to determine the effects of a
given set of queries or a given time period, it makes sense to calculate the difference
between two DMV snapshots. Running the SQL script given in the following listing will
identify the waits that occur over a given 10-minute period, ordered by RealWait.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT wait_type, waiting_tasks_count
 , wait_time_ms, max_wait_time_ms, signal_wait_time_ms
INTO #PreWorkWaitStats
FROM sys.dm_os_wait_stats

WAITFOR DELAY '00:10:00'

SELECT wait_type, waiting_tasks_count
 , wait_time_ms, max_wait_time_ms, signal_wait_time_ms
INTO #PostWorkWaitStats
FROM sys.dm_os_wait_stats

SELECT
 p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) AS wait_time_ms
 , p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)
 AS signal_wait_time_ms
 , ((p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0))
 - (p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)))
 AS RealWait
 , p2.wait_type
FROM #PreWorkWaitStats p1
RIGHT OUTER JOIN
#PostWorkWaitStats p2 ON p2.wait_type = ISNULL(p1.wait_type, p2.wait_type)
WHERE p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) > 0
 AND p2.wait_type NOT LIKE '%SLEEP%'
 AND p2.wait_type != 'WAITFOR'
ORDER BY RealWait DESC

DROP TABLE #PostWorkWaitStats
DROP TABLE #PreWorkWaitStats

The DMV snapshot approach given in this example is based on the DMV snapshot pat-
tern explained more fully in chapter 2. First, we take a snapshot of the relevant DMV
counters B, then we run a query or wait for a given time period to elapse C, and then
we take another DMV snapshot D. The DMV snapshots are compared to determine
what has changed E, and the results are sorted by the RealWait column F.

 The DMV and columns used are the same as described in the previous script.
In this example, we find out the waits that occur over a given time period, 10 min-
utes in this example. You may want to alter this time interval to suit your needs. If

Listing 6.2 Why are you waiting? (snapshot version)

Get pre-query
DMV counters

B

Do something
here (SQL query
or time delay)

C

Get post-query
DMV counters

D

Calculate changes
in wait states
counters

E

Sort by
real waitF
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 6 Operating system DMVs
you want to examine the wait types associated with a given SQL statement or batch
of SQL, you can replace the WAITFOR command given in the script with relevant
SQL statements.

 Sample output for this query is shown in figure 6.2.
 The output in figure 6.2 shows that the most common wait type was BROKER_TASK_

STOP. In all the different wait types, the values in the column signal_wait_time_ms are
small relative to the column wait_time_ms. This suggests that during the running of
this script, this SQL Server CPU wasn’t under pressure.

 Although it may be interesting to observe the different wait types that occur at dif-
ferent periods, ideally you want to know which SQL queries are running that produce
these wait types. We discuss this in the next section.

6.4 Identifying why queries wait
You’ve just seen how to get a DMV snapshot delta for a given time interval. In the chap-
ter concerning execution-based DMVs, you saw how to determine which queries are
being blocked the most. If you combine both scripts, you’ll have both details of the
most-blocked queries and the reason why these queries were blocked. This will form
our next script. If you know why your queries are waiting, you’ll have a starting point
from which to make improvements.

NOTE In the example given, the WAITFOR DELAY command is used to
record details of any queries and waits that occur for the duration of the
WAITFOR command. It’s possible to replace the WAITFOR command with
your own specific SQL query or batch of SQL, to get the waits associated
with your queries.

6.4.1 Discovering why your queries are waiting

Knowing why your queries are waiting provides valuable diagnostic information. You
can enhance this by knowing which SQL queries have been run over the period under
examination. Running the SQL script given in listing 6.3 will identify both the type of

Figure 6.2 Output showing the most common wait type
(snapshot version)
www.it-ebooks.info

http://www.it-ebooks.info/

155Identifying why queries wait
waits that are occurring and the queries that have run, over the given time period. In
this example, the time period is five minutes; you may want to alter this time interval
to suit your needs.

--ThisRoutineIdentifier
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 wait_type, waiting_tasks_count
 , wait_time_ms, max_wait_time_ms, signal_wait_time_ms
INTO #PreWorkWaitStats
FROM sys.dm_os_wait_stats

WAITFOR DELAY '00:05:00'

SELECT
 wait_type, waiting_tasks_count, wait_time_ms
 , max_wait_time_ms, signal_wait_time_ms
INTO #PostWorkWaitStats
FROM sys.dm_os_wait_stats

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) AS wait_time_ms
 , p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)
 AS signal_wait_time_ms
 , ((p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0))
 – (p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)))
 AS RealWait
 , p2.wait_type
FROM #PreWorkWaitStats p1
RIGHT OUTER JOIN
#PostWorkWaitStats p2 ON p2.wait_type = ISNULL(p1.wait_type, p2.wait_type)
WHERE p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) > 0
 AND p2.wait_type NOT LIKE '%SLEEP%'
 AND p2.wait_type != 'WAITFOR'
ORDER BY RealWait DESC

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]

Listing 6.3 Why your queries are waiting

Script
identifierB

Pre-work
query
countersC

Pre-work wait
states countersD

Do something here
(query or delay)

E

Post-work wait
states countersF

Post-work
query counters

G

Calculate
wait states
counters
changesH

Calculate query
counters
changes

I

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6 Operating system DMVs
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) -
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
 AND qt.text NOT LIKE '--ThisRoutineIdentifier%'
ORDER BY [Time blocked] DESC

DROP TABLE #PostWorkWaitStats
DROP TABLE #PreWorkWaitStats
DROP TABLE #PostWorkQuerySnapShot
DROP TABLE #PreWorkQuerySnapShot

We give the script a script identifier that uniquely identifies it B; this allows us to filter
this query from the results. We take pre-work snapshots of the query C and wait states
DMV counters D. We then run the query that we want details about (this could be an
individual query or a batch or a time interval) E, and we take post-work snapshots of
the wait states F and query DMV G counters. Then we calculate the change in the
DMV counters for both the wait states H and query DMV counters I.

 Listing 6.3 calculates which waits are associated with which queries that run over
the given time interval.

 Figure 6.3 shows an example of the type of output for this query.
 The first grid in figure 6.3 shows the wait types that occurred when the script was

run. Similarly, the second grid shows the most-blocked queries during the same time
period. The next step in any analysis would be to run the most-blocked queries indi-
vidually and record the wait types associated with each, with a view to correcting the
underlying problem. For example, if when the most-blocked query runs alone it’s
associated with the CXPACKET wait, then it may be that the query needs to have a hint
added to it that specifies the degree of parallelism (DOP). For further details of the
www.it-ebooks.info

http://www.it-ebooks.info/

157Queries that are waiting
meaning of the wait types, what they represent, and how they can be used to improve
your server and queries, see the “Waits and Queues” Microsoft white paper men-
tioned earlier.

 We’ve discussed waits from a server viewpoint and now from a given SQL query
workload viewpoint. Next, we’ll discuss how to discover what the currently running
SQL statements are waiting on.

6.5 Queries that are waiting
In chapter 5, section 5.9 contains a script to identify currently running queries.
The output from this script also includes two wait-related columns. The column
wait_type identifies why the query is currently waiting, and the column last_wait_
type identifies the last wait type (even for running queries). An example of the
output from the script in section 5.9 is shown in figure 6.4, with both a waiting
query and a runnable query. Note that the wait columns have been rearranged for
this figure.

 Figure 6.4 shows that the query with a session_id of 96 has a status of suspended
and a wait_type of CXPACKET. The query with the session_id of 100 has a status of run-
nable and a NULL wait type. An explanation of the various status column values is
given in table 6.4.

Figure 6.3 Output showing the most-blocked queries as well as the most-common wait type in a given
time interval

Figure 6.4 Output showing a currently waiting query
www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 6 Operating system DMVs
In relation to the wait-related DMV sys.dm_os_wait_stats, the time a query spends sus-
pended and runnable is collectively recorded in the wait_time_ms column for the rel-
evant wait type. The time a query spends in a runnable status is recorded in the
signal_wait_time_ms column for the relevant wait type.

 Examining the specific wait types associated with the submitted queries should
provide a lead in identifying how to improve the performance of those specific que-
ries. Further details of how to do this are given in the Microsoft “Waits and Queues”
white paper.

6.6 Finding what’s blocking running SQL
Many SQL queries run fine in isolation, but in the real world SQL queries need to
interact with other running queries. The queries compete for resources, often leading
to temporary blocking. This is normal and to be expected. But if you notice queries
running slowly, it’s possible to identify the queries involved and perhaps reschedule
them so they don’t run concurrently or to decode the resource the queries are com-
peting for, possibly removing the contention. For example, if an index is the cause of
contention, it’s possible to create another index that could remove this contention,
allowing both queries to progress.

 In chapter 1, you saw a script that involved a simple monitor; it referred to a utility
named dba_BlockTracer that showed queries involved in blocking. The script given in
this section is similar, but it uses DMVs only (the other script used sys.sysprocesses), so
it should be more viable in the future.

6.6.1 What’s blocking my SQL query?

When users call to ask why their queries are running slowly, I often turn to this script
to quickly determine if blocking is the cause. Running the SQL script given in the fol-
lowing listing will identify what and who are causing the blocking and what and who
are being blocked.

SELECT
 Blocking.session_id as BlockingSessionId
 , Sess.login_name AS BlockingUser

Table 6.4 Query status values

Status Description

Running The query is using CPU.

Runnable The query is not waiting on a resource. It’s in a queue ready to run, but
some other query is using the CPU.

Suspended The query is waiting on some resource.

Sleeping SQL Server is waiting for the next command.

Listing 6.4 What is blocked?

Blocker
detailsB
www.it-ebooks.info

http://www.it-ebooks.info/

159Finding what’s blocking running SQL
 , BlockingSQL.text AS BlockingSQL
 , Waits.wait_type WhyBlocked
 , Blocked.session_id AS BlockedSessionId
 , USER_NAME(Blocked.user_id) AS BlockedUser
 , BlockedSQL.text AS BlockedSQL
 , DB_NAME(Blocked.database_id) AS DatabaseName
FROM sys.dm_exec_connections AS Blocking
INNER JOIN sys.dm_exec_requests AS Blocked
 ON Blocking.session_id = Blocked.blocking_session_id
INNER JOIN sys.dm_os_waiting_tasks AS Waits
 ON Blocked.session_id = Waits.session_id
RIGHT OUTER JOIN sys.dm_exec_sessions Sess
 ON Blocking.session_id = sess.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocking.most_recent_sql_handle)
 AS BlockingSQL
CROSS APPLY sys.dm_exec_sql_text(Blocked.sql_handle) AS BlockedSQL
ORDER BY BlockingSessionId, BlockedSessionId

The script shows details of the query that is causing the blocking B, specifically the
session id, the query text, and the reason for the wait/blocking. This is followed by
details of the query that’s blocked C, including the session id, the username, and the
query being blocked.

 In this script, four DMVs and one DMF are used to identify which queries are being
blocked. Table 6.5 gives a brief description of each.

By joining the DMVs and DMF, we have enough information to determine which SQL
queries are causing blocking and which queries are being blocked, across all data-
bases on the server. The DMVs sys.dm_exec_connections, sys.dm_exec_requests, and
sys.dm_os_waiting_tasks are joined on their common key column session_id (blocking_
session_id in the case of sys.dm_exec_requests). These DMVs have a RIGHT OUTER
JOIN to the DMV sys.dm_exec_sessions; this is because the blocking queries are typi-
cally running and will be present in the sys.dm_dm_os_waiting_tasks DMV.

 The blocking query’s most_recent_sql_handle is passed to the DMF sys.dm_
exec_sql_text to retrieve the text of the blocking SQL query. Similarly, the blocked
query’s sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the text of
the blocked SQL query.

Table 6.5 DMVs/DMF to identify queries that are blocked

DMV/DMF Description

sys.dm_exec_connections Contains details about connections established on SQL Server

sys.dm_exec_requests Contains details about each request executing on SQL Server

sys.dm_os_waiting_tasks Contains details about the wait queues of tasks that are waiting
on some resource

sys.dm_exec_sessions Contains details about each authenticated session on SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle

Blocked
detailsC
www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6 Operating system DMVs
Sample output for this query is shown in figure 6.5.
 In the output, you can see that SessionId 101 is blocking SessionId 76. The users

causing the blocking and being blocked are both identified. Similarly, the SQL que-
ries involved in the blocking are identified. You can also see that SessionId 103 is
also being blocked by SessionId 101, and SessionId 85 is being blocked by Ses-
sionId 103.

 It might prove useful to run this script together with the one given in chapter 5
(section 5.9) to get more complete and detailed information about what specific lines
of SQL are causing the blocking and being blocked. The two sets of output can be
interlinked via their common session_id.

Having looked at how useful wait states can be in identifying the cause of perfor-
mance problems, we’ll now look at the SQL Server performance counter. These two
aspects of DMVs, taken together, can provide combined supportive information for
identifying problems and providing potential solutions.

6.7 SQL Server performance counters
Performance Monitor is a well-known tool for collecting detailed operating system
information. Such information includes metrics relating to memory, processor, I/O,
and the network. The tool is invariably known by the shorter name of PerfMon or
SysMon. PerfMon allows you to monitor counters that relate to various hardware
and software resources. The objects provide a grouping for the detailed contained
counters; for example, to monitor the amount of blocking, you’d look at the
object named SQLServer:General Statistics and then the counter Processes Blocked.

Using cached plans for blocking queries
It might be useful to mention here that when blocking occurs (or waiting, for that
matter), developers often examine the cached plan for clues on how to speed up
the query. Although this approach is common, you should note that the cached
plan’s metrics don’t take into account interaction with other running queries. So
while you might improve the performance of the section of SQL in a batch that has
the highest cost, it may have little impact on a piece of SQL that has little cost but
is involved in blocking. In this case, it makes more sense to run the batch of SQL
inside a wrapper that records the duration of each SQL statement within the batch
and target these for improvement. In essence, this gives you instrumentation
inside your SQL code. An example of this is given in section 6.10.

Figure 6.5 Output showing which SQL queries are blocking and being blocked
www.it-ebooks.info

http://www.it-ebooks.info/

161SQL Server performance counters
Monitoring the changes in these counters is a useful step in determining the cause
of a problem.

 Another column provided by Performance Monitor is named instance_name. This
typically contains the database name the counter relates to. If you wanted to collect
details about all the databases, you’d look at the instance_name of _Total or else you’d
look at the corresponding counters for the database you’re interested in.

SQL Server provides a DMV named sys.dm_os_performance_counters that enables
you to view these counters from within SQL Server. But unlike its Windows counter-
part, you can see only those objects that relate to SQL Server. Although this might
limit its usefulness, it does enable you to obtain and examine some useful information
from within SQL Server.

 You could monitor many hundreds of counters, but as with much of life, targeting
a few specific areas will give you most return for the time invested. A list of the more
useful objects and counters, together with a description of their meaning and an indi-
cation of the problem area they relate to, is given in table 6.6.

Table 6.6 Useful SQL Server performance-monitoring objects/counters

Object Counter

SQLServer:Access Methods Full Scans/sec. Occurs when an entire table or index is scanned.
Often indicates excessive I/O. Look at missing indexes DMV to fix
the problem. Also check SQL; maybe too many rows are being
requested.

Forwarded Records/sec. Indicates tables without clustered index.
Inserted rows have pointers due to split. Corrected by using fixed-
length records.

Table Lock Escalations/sec. Records the number of times locks on
a table were escalated. Large values can indicate design problems.

SQLServer:Latches Total Latch Wait Time (ms). Latches are short-term synchronization
objects. Often indicate I/O bottleneck or memory pressures.

SQLServer:SQL Statistics Batch Requests/sec. Shows amount of SQL submitted per second.
Compare with SQL Compilations/sec to determine how often these
queries are compiled/ recompiled.

SQL Compilations/sec. High value, compared with Batch Requests/
sec; indicates inefficient reuse of cached plans.

SQL Re-Compilations/sec. High value, compared with Batch
Requests/sec; indicates inefficient reuse of cached plans.

SQLServer:Buffer Manager Buffer Cache Hit Ratio. Percentage of time the requested pages are
already in the cache. If low (< 98%), may indicate memory pres-
sures. May be fixed by adding more memory.

Page Life Expectancy. Time in seconds that data pages stay in the
SQL Server cache. Low value is < 300. May indicate memory prob-
lems or missing indexes.
www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 6 Operating system DMVs
Some of the counters are cumulative, although others are per second. Examining
each of these sets of counters will require a different understanding. For per-second
values, ideally the values should be recorded per second (or some other short time
period). You can achieve this by storing the DMV snapshot into a temporary table
each second; a GO statement followed by an appropriate number (for example,
GO 60) will enable this to occur easily. An example of this is given later in this chapter
(section 6.12).

 When examining the changes in values, it’s important to measure them with
reference to a default or benchmark set of values. This set of values contains the
typical values for your system; having this set of values allows you to make a con-
sidered judgment when the values change. In its absence, you might be able to
infer the impact of the changed values by comparing the performance counter
values in the period immediately before or after you run your queries.

 Examining the values for specific performance counters should provide a lead to
identify both the cause of the problem and how to improve the performance of those
specific queries. Further details of how to do this are given in the Microsoft “Waits and
Queues” white paper mentioned earlier.

 Many other non-SQL performance counters should be monitored with a view to
corroborating or rejecting your understanding of the potential causes of the perfor-
mance problems. Let’s look at some of the more useful counters.

6.7.1 Important non-SQL performance counters

The list of counters provided by the sys.dm_os_performance_counters DMV is rela-
tively small when compared with those available within the Windows environment.
Although the list provided by the DMV might be useful for determining the cause of

SQLServer:Memory Manager Memory Grants Pending. Indicates insufficient memory for the user
to run their query. Ideally, this value should be around zero. May be
solved by adding more memory.

Target Server Memory (KB). Total physical memory available to SQL
Server. Ideally, its value should be close to the amount of physical
memory on the server.

Total Server Memory (KB). Amount of physical memory currently
assigned to SQL Server. Should be high if SQL Server is running on a
dedicated box (i.e., no IIS or Exchange present). Ideally, should be
close in value to Target Server Memory (KB).

SQLServer:General Statistics Processes Blocked. Number of currently blocked processes. Large
values indicate concurrency problems.

SQLServer:Locks Lock Waits/sec. Indicative of transactions, hence should be low.
Memory pressure or missing index might increase values.

Table 6.6 Useful SQL Server performance-monitoring objects/counters (continued)

Object Counter
www.it-ebooks.info

http://www.it-ebooks.info/

163SQL Server performance counters
some SQL Server–based issues, often you’ll want to use PerfMon to record counters
that relate to memory, processor, disk, and network. A list of the more useful objects
and counters used for monitoring, as well as a description of their meaning and an
indication of the problem area they relate to, is given in table 6.7.

Where possible, all these performance counters (both SQL Server and non–SQL
Server) should be included as a minimum in any monitoring to help determine the
underlying cause of any performance problems. Ideally, you should create a bench-
mark, which contains the counters’ values over a typical 24-hour period. Then when
you experience performance problems, you can start recording the performance
counters again and compare them with the benchmark. This should highlight areas
that underlie the problem and provide targeted areas for improvement.

 If you do decide to use the more-extensive performance counters provided by the
Windows environment, I’d encourage you to use the Performance Analysis of Logs
(PAL) tool for analyzing the output. This tool highlights the peaks and troughs in your
logs and provides plenty of commentary on their potential causes.

Table 6.7 Useful non-SQL performance-monitoring objects/counters

Object Counter

Memory Available Bytes. The amount of free RAM on server. If it has a
relatively low value, this indicates memory is a limiting factor.
Check to see if other applications (apart from SQL Server) are
running on the server.

Pages/sec. Shows amount of Windows paging. Values should
ideally be close to zero.

Physical Disk % Disk Time. The percentage of time the disk is busy. It will
have peaks but should be below 10%. Performance is better if
the data is already in the buffer.

Avg. Disk Queue Length. If value is high (> 2 per disk), indi-
cates I/O bandwidth problem.

Current Disk Queue Length. If value is high (> 2 per disk), indi-
cates I/O subsystems can’t keep up with the workload.

Processor % Processor Time. Percentage of time the CPU is doing
work. Sustained periods where the values exceed 80% indi-
cate CPU bottleneck.

% User Time. Percentage of time CPU spends doing user
work. If the value exceeds 70% consistently, it indicates a
CPU bottleneck with the SQL Server workload. Check to see
if other applications (apart from SQL Server) are running on
the server.

Network Interface (network card) Bytes Total/sec. Rate at which the bytes are transferred on
the network interface card (NIC). A value below 50% of the
card’s capacity should be acceptable. There will be peaks.
www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 6 Operating system DMVs
6.8 Effect of running SQL queries on the
performance counters
When SQL queries run, they require various resources, and this resource usage is
reflected in the changing values in the underlying operating system performance
counters. Examining the changes in these counters should identify what factors
may be limiting the performance of your queries. Correcting these will improve
their performance.

 You can determine how the performance counters change over a given time
period by calculating the difference between two DMV snapshots, taken at the start
and end of a time interval. Running the SQL script given here will show how the per-
formance counters change over the given time interval. In this example, the time
period is five minutes; you may want to alter this time interval to suit your needs.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PreWorkOSSnapShot
FROM sys.dm_os_performance_counters

WAITFOR DELAY '00:05:00'

SELECT
 [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PostWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT
 p2.object_name, p2.counter_name, p2.instance_name
 , ISNULL(p1.cntr_value, 0) AS InitialValue
 , p2.cntr_value AS FinalValue
 , p2.cntr_value - ISNULL(p1.cntr_value, 0) AS Change
 , (p2.cntr_value - ISNULL(p1.cntr_value, 0)) * 100 / p1.cntr_value
 AS [% Change]
FROM #PreWorkOSSnapShot p1
RIGHT OUTER JOIN
#PostWorkOSSnapShot p2 ON p2.object_name =
 ISNULL(p1.object_name, p2.object_name)
 AND p2.counter_name = ISNULL(p1.counter_name, p2.counter_name)
 AND p2.instance_name = ISNULL(p1.instance_name, p2.instance_name)
WHERE p2.cntr_value - ISNULL(p1.cntr_value, 0) > 0
 AND ISNULL(p1.cntr_value, 0) != 0
ORDER BY [% Change] DESC, Change DESC

DROP TABLE #PreWorkOSSnapShot
DROP TABLE #PostWorkOSSnapShot

The script shown in listing 6.5 takes a pre-work snapshot of all of the performance
counters B. It then waits a given time interval (five minutes in the script example) C

Listing 6.5 Effect of queries on performance counters

Get pre-work
performance counters

B

Wait a given
time interval

C

Get post-work
performance countersD

Calculate
changes

E

www.it-ebooks.info

http://www.it-ebooks.info/

165How performance counters and wait states relate
and takes a post-work snapshot D. The script then determines the percentage change
in value for each of the counters, for each object, for each instance E. The results are
sorted by the percentage change in value in descending order.

 Although sorting by the percentage change in value may be adequate for showing
the changes in performance counters in a generic manner, it may not be adequate for
a more detailed investigation. In particular, some counters may have a small percent-
age change in value but have a significant impact on performance. Additionally, the
percentage change in value is too dependent on the counter’s initial value. For these
reasons, the initial and final values of the performance counters are also output; this
will provide raw data for any subsequent analysis.

 An example of the type of output for this script is shown in figure 6.6.
 The example script shows the change in performance counter values over a given

time interval. Although this might be useful in cases where you want to determine
what’s happening with a batch of SQL that runs periodically, it’s possible to replace
the WAITFOR command with a SQL query or batch of SQL that you want to deter-
mine the effects of. I’ll show how to do this in section 6.10.

 Next, we’ll examine how both the performance counters and wait states change
over a given time interval, and you’ll see how the results support and corroborate
each other.

6.9 How performance counters and wait states relate
In addition to determining the effect of queries on performance counters, it’s possi-
ble to determine what effect these queries have on wait states. This is interesting
because performance counters and wait states are often used together to target the
underlying cause of slow query performance.

 Previously, we examined how wait states and queries change over a given time
interval. Similarly, here we’ll examine how performance counters and wait states
change over a given time period. Running the SQL script given in the following listing
will identify the changes in the wait states and performance counters over the given
time interval.

Figure 6.6 Output showing the change in performance counter values
www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 6 Operating system DMVs
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PreWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT
 wait_type, waiting_tasks_count
 , wait_time_ms, max_wait_time_ms, signal_wait_time_ms
INTO #PreWorkWaitStats
FROM sys.dm_os_wait_stats

WAITFOR DELAY '00:05:00'

SELECT
 wait_type, waiting_tasks_count, wait_time_ms
 , max_wait_time_ms, signal_wait_time_ms
INTO #PostWorkWaitStats
FROM sys.dm_os_wait_stats

SELECT
 [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PostWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT
 p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) AS wait_time_ms
 , p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)
 AS signal_wait_time_ms
 , ((p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0)) –
 (p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)))
 AS RealWait
 , p2.wait_type
FROM #PreWorkWaitStats p1
RIGHT OUTER JOIN
#PostWorkWaitStats p2 ON p2.wait_type = ISNULL(p1.wait_type, p2.wait_type)
WHERE p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) > 0
 AND p2.wait_type NOT LIKE '%SLEEP%'
 AND p2.wait_type != 'WAITFOR'
ORDER BY RealWait DESC

SELECT
 p2.object_name, p2.counter_name, p2.instance_name
 , ISNULL(p1.cntr_value, 0) AS InitialValue
 , p2.cntr_value AS FinalValue
 , p2.cntr_value - ISNULL(p1.cntr_value, 0) AS Change
 , (p2.cntr_value - ISNULL(p1.cntr_value, 0)) * 100 / p1.cntr_value
 AS [% Change]
FROM #PreWorkOSSnapShot p1
RIGHT OUTER JOIN
#PostWorkOSSnapShot p2 ON p2.object_name =
 ISNULL(p1.object_name, p2.object_name)

Listing 6.6 Changes in performance counters and wait states

Get pre-work
performance counters

B

Get pre-work wait
states counters

C

Wait a given
time interval

D

Get post-work
performance countersE

Get post-work wait
states counters

F

Calculate
changes in
wait states

G

Calculate changes
in performance
counters

H

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

167How performance counters and wait states relate
 AND p2.counter_name = ISNULL(p1.counter_name, p2.counter_name)
 AND p2.instance_name = ISNULL(p1.instance_name, p2.instance_name)
WHERE p2.cntr_value - ISNULL(p1.cntr_value, 0) > 0
 AND ISNULL(p1.cntr_value, 0) != 0
ORDER BY [% Change] DESC, Change DESC

DROP TABLE #PostWorkWaitStats
DROP TABLE #PreWorkWaitStats
DROP TABLE #PreWorkOSSnapShot
DROP TABLE #PostWorkOSSnapShot

The script shown in listing 6.6 takes a pre-work snapshot of all of the performance
counters B and the wait states C. It then waits a given time interval D (five min-
utes in the script example; you may want to alter this time interval to suit your
needs) and takes a post-work snapshot for both the performance counters E and
the wait states F.

 The script then determines the change in value of the wait states G and calculates
the percentage change in value for each of the performance counters, for each
object, for each instance H.

 Figure 6.7 shows sample output for this script.
 Examining the changes in both the wait states and performance counters should

reveal some factors that require future investigation, which should then lead to per-
formance improvements.

 Having looked at how performance counters and wait states change while SQL
queries run, it would be nice to know what specific queries are running and causing
these changes. I’ll provide a script to do that next.

Figure 6.7 Output showing the change in wait state and performance counter values
www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 6 Operating system DMVs
6.10 SQL queries and how they change the performance
counters and wait states
Previously we determined the effect of queries on performance counters and deter-
mined what effect these queries have on both wait states and performance counters.
You can go one step further and display which queries have run. This will allow you to
correlate the individual SQL queries with the changes in the wait states and perfor-
mance counters.

 Reporting the changes in performance counters, wait states, and queries over a
given time period should allow you to identify the relationship between performance
counters and wait states and determine how they’re influenced by the running que-
ries. Running the SQL script given next will identify how the performance counters,
wait states, and queries interact.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PreWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT
 wait_type, waiting_tasks_count
 , wait_time_ms, max_wait_time_ms, signal_wait_time_ms
INTO #PreWorkWaitStats
FROM sys.dm_os_wait_stats

WAITFOR DELAY '00:05:00'

SELECT
 wait_type, waiting_tasks_count, wait_time_ms
 , max_wait_time_ms, signal_wait_time_ms
INTO #PostWorkWaitStats
FROM sys.dm_os_wait_stats

SELECT
 [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PostWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset

Listing 6.7 Queries that change performance counters and wait states

Get pre-work
query counters

B

Get pre-work
performance
countersC

Get pre-work
wait states
countersD

Wait a given
time interval

E

Get post-work wait
states countersF

Get post-work
performance countersG

Get post-work
query counters

H

www.it-ebooks.info

http://www.it-ebooks.info/

169SQL queries and how they change the performance counters and wait states
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) -
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
 AND qt.text NOT LIKE '--ThisRoutineIdentifier%'
ORDER BY [Duration] DESC

SELECT
 p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) AS wait_time_ms
 , p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)
 AS signal_wait_time_ms
 , ((p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0)) –
 (p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)))
 AS RealWait
 , p2.wait_type
FROM #PreWorkWaitStats p1
RIGHT OUTER JOIN
#PostWorkWaitStats p2 ON p2.wait_type = ISNULL(p1.wait_type, p2.wait_type)
WHERE p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) > 0
 AND p2.wait_type NOT LIKE '%SLEEP%'
 AND p2.wait_type != 'WAITFOR'
ORDER BY RealWait DESC

SELECT
 p2.object_name, p2.counter_name, p2.instance_name
 , ISNULL(p1.cntr_value, 0) AS InitialValue
 , p2.cntr_value AS FinalValue

Calculate changes
in query counters

I

Calculate changes
in wait states

J

Calculate changes
in performance
counters

1)
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 6 Operating system DMVs
 , p2.cntr_value - ISNULL(p1.cntr_value, 0) AS Change
, (p2.cntr_value - ISNULL(p1.cntr_value, 0)) * 100 / p1.cntr_value
 AS [% Change]
FROM #PreWorkOSSnapShot p1
RIGHT OUTER JOIN
#PostWorkOSSnapShot p2 ON p2.object_name =
 ISNULL(p1.object_name, p2.object_name)
 AND p2.counter_name = ISNULL(p1.counter_name, p2.counter_name)
 AND p2.instance_name = ISNULL(p1.instance_name, p2.instance_name)
WHERE p2.cntr_value - ISNULL(p1.cntr_value, 0) > 0
 AND ISNULL(p1.cntr_value, 0) != 0
ORDER BY [% Change] DESC, Change DESC

DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot
DROP TABLE #PostWorkWaitStats
DROP TABLE #PreWorkWaitStats
DROP TABLE #PreWorkOSSnapShot
DROP TABLE #PostWorkOSSnapShot

The script shown in listing 6.7 takes a pre-work snapshot of all of the query counters B,
performance counters C, and wait states D. It then waits a given time interval E (five
minutes in the script example; you may want to alter this time interval to suit your
needs) and then takes a post-work snapshot for the wait states F, performance coun-
ters G, and query counters H. The script determines the change in value of the query
counters I and wait states J and then calculates the percentage change in value for
each of the performance counters .

 To get detailed information about any of the specific DMV snapshots shown, see
the relevant section of this book for that DMV snapshot. Here we’re interested in
any relationship between the DMV snapshots rather than the individual DMV snap-
shots themselves.

 An example of the type of output for this script is shown in figure 6.8.
 The first grid shown in figure 6.8 shows the queries that ran during the given time

interval, sorted by query duration. The second grid shows the wait states that occurred

1)

Figure 6.8 Output showing the change in performance counter values for the identified queries
www.it-ebooks.info

http://www.it-ebooks.info/

171Correlating wait states and performance counters
during the same time interval, sorted by wait_time_ms. The last grid shows the change
in the various SQL Server performance counters over the same time interval, sorted by
percentage change in value. You can infer that the changed values in the wait states
and performance counters are a result of running the queries. You could determine
the effects of specific queries by replacing the WAITFOR statement in the script with
the SQL query you want to examine.

 Once you know which queries in particular are troublesome, you could wrap the
DMV snapshot code around the particular statement(s) to get more detailed informa-
tion about that query.

6.11 Correlating wait states and performance counters
Wait states and performance counters often display an association with each other;
this relationship can be used to corroborate either of them. A list of some of the
more common associations is given in table 6.8. For a more detailed description of
the waits states and performance counters, please see the relevant section earlier in
this chapter.

Having identified how the wait states and performance counters relate, we’ll now dis-
cuss how to capture DMV snapshot information on a regular basis, allowing for fur-
ther analysis.

Table 6.8 Associations between wait states and performance-monitoring objects/counters

Wait state Performance counter

ASYNC_IO_COMPLETION Physical Disk: Avg. Disk Queue Length
Physical Disk: Current Disk Queue Length
Memory: Available Bytes
Memory: Pages/sec

IO_COMPLETION Physical Disk: Avg. Disk Queue Length
Physical Disk: Current Disk Queue Length
Memory: Available Bytes
Memory: Pages/sec

LATCH_xx Memory: Available Bytes
Memory: Pages/sec

LOGMGR Physical Disk: Avg. Disk Queue Length
Physical Disk: Current Disk Queue Length

PAGEIOLATCH_xx Physical Disk: Avg. Disk Queue Length
Physical Disk: Current Disk Queue Length

PAGELATCH_xx Physical Disk: Avg. Disk Queue Length
Physical Disk: Current Disk Queue Length

WRITELOG Physical Disk: Avg. Disk Queue Length
Physical Disk: Current Disk Queue Length
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 6 Operating system DMVs
6.12 Capturing DMV data periodically
The scripts you’ve seen so far typically involve taking a DMV snapshot of relevant met-
rics, doing some work (for example, running a query or waiting a given time interval),
and then taking another DMV snapshot. Finally, you compare the two DMV snapshots
to determine what effect the query or time interval has on the DMV delta.

 With DMV data in general, and performance counters in particular (especially
the per-second ones), it can prove instructive to record the DMV metrics on a
more regular basis. The script you can use to record DMV snapshots periodically is
given here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

CREATE TABLE #PerfCounters
(RunDateTime datetime NOT NULL,
 object_name nchar(128) NOT NULL,
 counter_name nchar(128) NOT NULL,
 instance_name nchar(128) NULL,
 cntr_value bigint NOT NULL,
 cntr_type int NOT NULL
)

ALTER TABLE #PerfCounters
ADD CONSTRAINT DF_PerFCounters_RunDateTime
 DEFAULT (getdate()) FOR RunDateTime
GO

INSERT INTO #PerfCounters
 (object_name,counter_name,instance_name,cntr_value,cntr_type)
(SELECT object_name,counter_name,instance_name,cntr_value,cntr_type
FROM sys.dm_os_performance_counters)

WAITFOR DELAY '00:00:01'
GO 20

SELECT * FROM #PerfCounters
ORDER BY RunDateTime, object_name,counter_name,instance_name

DROP TABLE #PerfCounters

The first section of the script in listing 6.8 creates a temporary table (named #Perf-
Counters) to hold the DMV metrics B. We add a constraint to the table to automati-
cally fill in the date and time the rows were added C. Note that the first GO statement
runs this batch of two commands.

 Next, we take a snapshot of the counters in the sys.dm_os_performance_counters
DMV and insert these into the table #PerfCounters D. We then wait a given time
interval (one second in this example) E. We run a GO command followed by the
number 20 F. GO 20 repeats the last SQL commands before the previous GO state-
ment. In our example, the INSERT and WAITFOR statements are executed a total of
20 times. Thus, we collect the performance counters each second, for 20 seconds. It

Listing 6.8 Recording DMV snapshots periodically

Create temp
table to hold
periodic resultsB

Add datetime
constraint

C

Extract
relevant
DMV data

D

Wait given
time interval

E

Repeat last
two statements
(20 times here)F
www.it-ebooks.info

http://www.it-ebooks.info/

173Summary
should be a simple matter of exporting the results of this script into Excel or some
other analysis tool to investigate how the various counters change over time.

 Although the example given in listing 6.8 relates specifically to how the perfor-
mance counter values change over time, you can use the pattern shown to examine in
greater detail how any of the various DMV data changes over time.

 Ideally, you’d use the more generic start and end DMV snapshots to record large
changes in counters, over one large time period, and then target specific highlighted
counters for greater investigation using this more periodic script.

 Sample output for this script is shown in figure 6.9.
 You can use this script as a template for recording information about other DMVs

on a regular basis.

6.13 Summary
In this chapter we examined the causes of why SQL Server queries must wait to run. I
provided scripts to examine both the accumulated types of waiting and also a DMV
snapshot delta to determine the waiting that’s occurring over a given time interval.
Linked to this, I provided a script to determine the wait states that occur when a given
SQL query or batch of SQL is run. I also described some of the more common wait
types, what problems they represent, and how these might be corrected.

 In addition to exploring wait states, I provided a script to show the changes in SQL
Server operating system counters, over a given time period or when a SQL query is
run. We combined scripts to determine how the wait states and performance counters
change when a given query runs or a time interval passes. The association between the
wait states and performance counters can be seen in the various script outputs.

 I provided a pattern to enable you to take DMV snapshots periodically. This should
allow you to collect more-detailed information and target specific counters.

 Having looked at how the various operating system–related DMVs can be used to
highlight and target various performance problems, next we’ll investigate Common
Language Runtime (CLR)–related DMVs.

Figure 6.9 Output showing the DMV snapshot data for performance counters
www.it-ebooks.info

http://www.it-ebooks.info/

Common Language
Runtime DMVs
SQL is great for performing set-based processing, where one or more rows of data
are manipulated in accordance with set theory. In the early days, Structured Query
Language (SQL) was extended, typically by third parties looking for commercial
advantage, to benefit from an increasingly technical environment. These nonstan-
dard, third-party-based SQL extensions were often embedded into a host program-
ming language to enhance its programmability. Extending the reach of SQL has a
long history, culminating in the current movement of using the Common Lan-
guage Runtime (CLR) to extend SQL programmability.

 Although this book is primarily about DMVs, I want to stray a little from the
CLR-based DMVs initially. I feel that in order for you to understand the CLR-based
DMVs, coupled with the fact that many SQL practitioners may not be so familiar
with CLR code, it would be best to first provide a background to CLR processing.
In addition, in this chapter I’ll create a small SQL CLR class, which will provide

This chapter covers
■ Overview of SQL CLR processing
■ Identifying queries that spend the most time

in the CLR
■ Getting information about your SQL CLR

assemblies
174

www.it-ebooks.info

http://www.it-ebooks.info/

175Introducing the CLR
regular expression functionality, allowing complex pattern matching to be used
within SQL queries. I hope this will offer a gentle introduction to the subject as well
as provide a useful piece of functionality.

 Microsoft provides the .NET Framework and Visual Studio for creating code that
will use the CLR. The .NET Framework is a set of libraries from Microsoft that facili-
tates the reuse of many well-written, well-tested classes (a class is a template for an
object, which allows you to do something useful). The CLR is a runtime environment
that manages the execution of the .NET code. The terms CLR and .NET in relation to
SQL are often used interchangeably. Although this may be technically incorrect, it
does follow the spirit of usage.

7.1 Introducing the CLR
Microsoft has incorporated the CLR into SQL Server itself, enabling you to write code
in one of the many .NET languages, for example, Visual Basic .NET or C#, that can eas-
ily be used from within your SQL queries. The main point to note is that the CLR gives
you access to many already-written classes that provide useful functionality that would
otherwise not be available or are difficult to program with SQL alone. Also, when used
correctly, CLR code typically provides improved performance.

CLR code won’t replace the standard set-based processing or data access that SQL
excels at. That said, there are cases where the CLR can exceed SQL performance. For
example, using a datareader (this is a container that points to the current row in a
group of rows) within CLR code is typically faster than SQL cursor processing—not
that I’m advocating SQL cursor processing as a standard solution.

 The dividing line between when to use SQL code and when to use CLR code can some-
times seem blurred. There are certain things that SQL code just cannot do (for example,
complex regular expressions). There are some things that SQL code does much better
than CLR code (for example, set-based processing), and there are some things that CLR
code does much better. Apart from the obvious areas of their respective advantages, if
you’re unsure about which to use, it’s best to test out any code using both SQL and CLR.

 One obvious disadvantage of the CLR is it requires you to learn a new program-
ming language and environment. But with the increasing usage of the CLR code
within SQL Server, you could turn this into an advantage for your resume.

 In summary, SQL code excels at

■ Data access
■ Set-based processing

CLR code is typically very good at

■ Complex calculation
■ String manipulation
■ Shredding XML
■ Accessing external resources
■ Iterative logic
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 7 Common Language Runtime DMVs
The CLR can be used to create various types of programming constructs, including
functions, stored procedures, and triggers. In practice, it’s used mostly to create func-
tions that can be called from within SQL code.

7.2 A simple CLR example
The main aim of the CLR code example given here is to illustrate how easy it is to cre-
ate functions in CLR code that can be used within SQL code. The code provides regu-
lar expression functionality, allowing complex pattern matching.

7.2.1 Creating a simple CLR class

Although the SQL LIKE keyword can be useful in pattern matching, it can be relatively
limited when compared to regular expression functionality. The following instruc-
tions show how to create a simple CLR class that contains regular expression functions
that can be used within SQL queries. Hopefully you’ll find the resultant functions use-
ful in your everyday work.

 The following example explains how to create a CLR function using Visual Studio
2010 Professional Edition (a version for Visual Studio 2008 is given immediately
after). To create the regular expression class, do the following:

1 From within Visual Studio 2010, choose File > New > Project > Database >
SQL Server.

2 Select the Visual C# SQL CLR Database project and enter a name for the project,
for example, CLRRegularExpression. Click the .NET Framework drop-down list,
and select a version of the CLR that’s appropriate for your version of SQL Server
(for SQL Server 2005 and 2008, this means .NET Framework 2.0 to 3.5). For
now, select .NET Framework 3.5, and then click OK.

3 Add a database reference. This is the database in which you want to create the
CLR function. You can change this later, if necessary. Click OK.

4 You’ll see a pop-up asking if you want to enable debugging on the connection;
click No.

5 Choose Project > Add User-Defined Function.
6 Replace the code in the created class with the code supplied in listing 7.1.
7 Choose Build > Build (yourProjectName). This creates a DLL (called an assem-

bly) from the CLR class.
8 Choose Build > Deploy (yourProjectName). This deploys your class and its

functions to the database you specified previously.

An example of how powerful the CLR can be
I recently experienced a problem with some SQL code that shredded some XML,
and it had become a noticeable bottleneck. Putting the required functionality into
a CLR function enabled it to run around 200 times faster and consequently
removed the bottleneck.
www.it-ebooks.info

http://www.it-ebooks.info/

177A simple CLR example
The following example explains how to create a CLR function using Visual Studio
2008 Professional Edition. To create the regular expression class, do the following:

1 From within Visual Studio 2008, choose File > New > Project > Visual C# >
Database.

2 Select the SQL Server project, and enter a name for the project, for example,
CLRRegularExpression. Click OK.

3 Add a database reference. This is the database in which you want to create the
CLR function. You can change this later if necessary. Click OK.

4 You’ll see a pop-up asking if you want to enable debugging on the connection;
click No.

5 Choose Project > Add User-Defined Function.
6 Replace the code in the created class with the code supplied in listing 7.1.
7 Choose Build > Build (yourProjectName). This creates a DLL (called an assem-

bly) from the CLR class.
8 Choose Build > Deploy (yourProjectName). This deploys your class and its

functions to the database you specified previously.

The C# code used to create regular expression functions that can be used within SQL
Server is given in the following listing.

using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Text.RegularExpressions;

namespace CLRRegEx
{

public partial class CLRRegEx
{

private const string sDigitsOnly = @"^\d+$";
private const string sEmailRegEx =
 @"^\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*$";
private const string sWebAddressRegEx =
 @"^http(s)?://([\w-*]+\.)+[\w-*]+(/[\w- ./?%&=*]*)?$";

[SqlFunction(IsDeterministic = true,

➥DataAccess = DataAccessKind.None)]
public static SqlBoolean RegExEmailIsValid(SqlString sSource)
{
 if (sSource.IsNull)
 return SqlBoolean.Null;
 else
 return (SqlBoolean)Regex.IsMatch(sSource.Value, sEmailRegEx
 , RegexOptions.IgnoreCase);
}

 [SqlFunction(IsDeterministic = true,

➥DataAccess = DataAccessKind.None)]

Listing 7.1 C# code to create regular expression functionality for use within SQL Server

Constants for
regular expression
patterns

B

Email pattern-
matching function

C

Digits-only pattern-
matching function

D

www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 7 Common Language Runtime DMVs
public static SqlBoolean RegExDigitsOnly(SqlString sSource)
{
 if (sSource.IsNull)
 return SqlBoolean.Null;
 else
 return (SqlBoolean)Regex.IsMatch(sSource.Value, sDigitsOnly
 , RegexOptions.CultureInvariant);
}

[SqlFunction(IsDeterministic = true,

➥DataAccess = DataAccessKind.None)]
public static SqlBoolean WebAddressIsValid(SqlString sSource)
{
 if (sSource.IsNull)
 return SqlBoolean.Null;
 else
 return (SqlBoolean)Regex.IsMatch(sSource.Value, sWebAddressRegEx
 , RegexOptions.IgnoreCase);
}

 [SqlFunction(IsDeterministic = true,

➥DataAccess = DataAccessKind.None)]
public static SqlString RegExReplace(SqlString sSource, SqlString sPattern
, SqlString sReplacement)
{
 if (sSource.IsNull || sPattern.IsNull || sReplacement.IsNull)
 return SqlString.Null;
 else
 return (SqlString)Regex.Replace(sSource.Value, sPattern.Value
 , sReplacement.Value);
}

 [SqlFunction(IsDeterministic = true,

➥DataAccess = DataAccessKind.None)]
public static SqlBoolean RegExMatch(SqlString sSource, SqlString sRegEx)
{
 if (sSource.IsNull || sRegEx.IsNull)
 return SqlBoolean.Null;
 else
 return (SqlBoolean)Regex.IsMatch(sSource.Value, sRegEx.Value
 , RegexOptions.CultureInvariant);
}

};
}

In the listing, we first declare some constants that will be used by the regular expres-
sion patterns B. Each of the five functions has a similar structure. You can deduce
each function’s usage from the name of the function. For example, RegExEmail-
IsValid C accepts a passed variable (sSource in the C# code), and validates it against
a known pattern for valid email addresses. Similarly, RegExDigitsOnly D deter-
mines if the passed variable contains only digits, and the function WebAddressIs-
Valid E determines if the passed variable represents a valid email address format.

Web address pattern-
matching function

E

Pattern-matching
and replace function

F

Generic regular
expression function

G

www.it-ebooks.info

http://www.it-ebooks.info/

179A simple CLR example
The function RegExReplace F accepts a vari-
able and a pattern to match against, and
matches are replaced with the value specified
in the variable sReplacement. Finally, the
most generic function is RegExMatch G; this
accepts an input variable and a pattern to
match against. It returns true if a match
occurs or false if there’s no match. Examples
of the use of each of these functions will be
given shortly.

 You can see the deployed assembly and its
associated functions from within SSMS. Fig-
ure 7.1 shows this on my local database. Under
the Programmability\Assemblies folder, you can
see the assembly we created named CLRRegular-
Expression; under the Programmability\Func-
tions\Scalar-valued Functions folder, you can
see the five regular expression functions.

 It’s also possible to determine which functions are in a SQL CLR assembly and see
their source code by using .NET reflection. The standard tool for inspecting assem-
blies and revealing their source code is Red Gate’s Reflector tool. An add-in for
Reflector permits you to view what functions exist within a SQL CLR assembly and also
to view the function’s source code. This can be useful when you’re unsure about
which CLR functions are associated with which SQL CLR assemblies. The add-in also
provides a drop-down box to display the source code in various .NET languages; this
might be useful as a simple language-conversion utility or if you’re more familiar with
Visual Basic than C#. An example of the output from this add-in is shown in figure 7.2.

 You can also view details of the assembly and functions just created from within
SSMS by querying the sys.assemblies and sys.assembly_files tables. The former gives
details of the assembly name, its permission set, and creation/modified dates. The lat-
ter contains details of the actual assembly code in hexadecimal format. Some addi-
tional files (including the associated debug and information files) are also included.
Figure 7.3 shows these details.

 Now that we’ve created our regular expression assembly and its associated func-
tions, you’ll see how to use them in your SQL queries.

7.2.2 Using the SQL CLR regular expression functions

With the regular expression assembly and its five functions under our belts, I now
want to show how they’re used from within SSMS. But before I can do this, you need to
enable CLR integration within SQL Server. You can do this with the commands given
in the following listing.

Figure 7.1 Viewing assembly and CLR
functions from within SQL Server
Management Studio
www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 7 Common Language Runtime DMVs
Figure 7.2 Using Red Gate’s Reflector and add-in to inspect SQL CLR code

Figure 7.3 Viewing details of the created assembly in the system tables
www.it-ebooks.info

http://www.it-ebooks.info/

181.NET Framework performance concerns
EXEC sp_configure 'show advanced options', 1

RECONFIGURE

EXEC sp_configure 'clr_enabled', 1

RECONFIGURE

Now that CLR integration is enabled, you can run various SQL queries from within
SSMS to test each of the CLR regular expression functions. The script given in the
following listing contains examples of such tests, together with notes of their
expected outcome.

SELECT dbo.RegExDigitsOnly('123456');
SELECT dbo.RegExDigitsOnly('123456789abc');

SELECT dbo.RegExEmailIsValid('ian_stirk@yahoo.com');
SELECT dbo.RegExEmailIsValid('ian_stirk@yahoo');

SELECT dbo.WebAddressIsValid

➥('http://www.manning.com/stirk');
SELECT dbo.WebAddressIsValid

➥('http://wwwmanningcom');

SELECT dbo.RegExReplace('Q123AS456WE789', '[^0-9]', 'a');

SELECT dbo.RegExMatch('123456789', '^[0-9]+$');
SELECT dbo.RegExMatch('12345678abc9', '^[0-9]+$');

The script shows how the SQL CLR regular expression functions can be used from
within SQL Server. Most examples show data that will pass and also data that would fail
the regular expression check. The first example relates to checking to see if the data
contains only digits B; this is followed by a check for a valid email address C and
then a check for a valid web address D. We then present an example of how data can
be replaced; specifically this example replaces any nondigits with the character ‘a’ E.
Finally, we use the generic regular expression function F.

 Now that we’ve created, built, deployed, and tested the CLR functions, I’ll briefly
highlight some areas of .NET CLR programming that may be a cause of concern in
relation to CLR performance.

7.3 .NET Framework performance concerns
The .NET Framework is Microsoft’s preferred development platform. Regarding
.NET code performance, table 7.1 lists some areas of concern relating to perfor-
mance and some possible solutions. Developers who already have experience
with .NET development can use this table as a reminder, and as such, it’s not
meant to be extensive or detailed. Yet it should highlight typical areas of concern
for .NET performance.

Listing 7.2 Enabling CLR integration within SQL Server

Listing 7.3 Using the CLR regular expression functionality

Pass B
Fail

Pass C
Fail

Pass D

Fail

E

Pass F
Fail
www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 7 Common Language Runtime DMVs
 For most applications, the performance bottleneck is typically the database.
We’re very lucky in that we specialize in an area where performance can be
improved. In addition, most of the scripts given in this book are aimed at improving
database performance. The areas given in table 7.1 relate to nondatabase .NET per-
formance tips.

Table 7.1 .NET application performance tips

Area Problem/solution

Loops Loops are a typical area of concern; if a problem exists
within a loop, it can be repeated many times. Where possi-
ble ensure that any values that can be cached are done out-
side the loop.

Data types Each variable has an explicit or implied data type (the latter
occurring increasingly with the recent var data type). Ensure
that the correct data type is used, or else unnecessary time
will be spent converting between types.

Reference/value types This is similar to the data type problem, but objects reside
on the heap and value types reside on the stack. Converting
between reference and value types (and vice versa) results in
extra code being written for boxing and unboxing, degrading
performance.

IDispose .NET takes care of memory resources when code exits. For
other resources you should implement the IDispose pattern to
ensure that nonmemory resources are disposed of adequately.

using Because it can be troublesome to remember to implement IDis-
pose and any associated error handling (try/catch), the using
keyword is used to combine this functionality.

Correct data structures You should use the correct data structure for the correct pro-
cessing. The dictionary should be used for key/value data, and
a list should be used for holding sequential data.

StringBuilder Strings can't change their values. When they appear to do so,
a new string is being created behind the scene, leaving the
original string occupying memory until it’s cleaned up by the
garbage collector. To get around this problem, you can use the
StringBuilder, which is built for changing data.

Generics Generics allow you to create a structure that can be imple-
mented in specific data types. Not only does this provide type
safety (for example, you can’t add a string to a structure that
implements integers), but generics are also faster than their
object counterparts.

Make chunky calls Typically, the number of calls made is more important for per-
formance than the amount of data passed for the same overall
data volumes. Aim to retrieve more data with fewer calls.
www.it-ebooks.info

http://www.it-ebooks.info/

183Time-consuming CLR queries
We’ve looked at some of the more prominent areas of concern relating to .NET pro-
gramming and performance. Now let’s examine how SQL Server reports this CLR
code in terms of long-running queries.

7.4 Time-consuming CLR queries
Although the underlying DMVs identified in this section relate to query execution,
and should perhaps therefore reside in the chapter on execution-related DMVs, it
seems more appropriate to include them in this CLR chapter because they relate to
code that executes within the CLR.

 All code statements, even those running within the CLR, can have performance
problems. If you can identify which statements spend the most time in the CLR, you
can target these for performance improvement. The next example script identifies
those queries.

 The DMV sys.dm_exec_query_stats records various metrics about the performance
of SQL queries, including the ones that use the CLR. The column total_clr_time
records the total time a given query spends in the CLR.

7.4.1 Finding the queries that spend the most time in the CLR

Identifying which queries spend most of their time in the CLR can be useful because it
typically identifies those queries that are CPU intensive and provides another avenue
of performance improvement via the .NET environment. Running the SQL script
given in the following listing will identify the top 20 queries that spend most of their
time within the CLR, ordered by total_clr_time.

Return multiple resultsets In some ways this is the next level of making chunky calls.
Where possible, have a stored procedure return multiple result-
sets that can be looped around and processed on the client.

Cache data when possible A lot of data doesn’t change often; where possible this data
should be cached. A callback mechanism can be implemented
to update the cache when the underlying data changes.

Error handling Don’t use error handling to control the normal flow of logic.
Exceptions should be exceptional.

Connection pooling Where possible, ensure that the database connection string is
the same between users of an application, because this facili-
tates connection reuse.

Reflection Although reflection is very flexible, it’s relatively slow and
bulky compared with native code, and you should avoid using it
if possible.

Table 7.1 .NET application performance tips (continued)

Area Problem/solution
www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 7 Common Language Runtime DMVs
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 qs.total_clr_time
 , qs.total_elapsed_time AS [Duration]
 , qs.total_worker_time AS [Time on CPU]
 , qs.total_elapsed_time – qs.total_worker_time AS [Time waiting]
 , qs.total_logical_reads
 , qs.total_logical_writes
 , qs.execution_count
 , SUBSTRING (qt.text,qs.statement_start_offset/2 + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END – qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(sql_handle) as qt
WHERE qs.total_clr_time > 0
ORDER BY qs.total_clr_time DESC

The listing shows how to extract the time spent in the CLR B and also shows the indi-
vidual SQL query that contains the SQL CLR function name C. The results are sorted
by the total_clr_time D because we’re interested in the queries that spend the most
time in the CLR.

 The listing uses one DMV and one DMF to identify the queries that spend the most
time in the CLR. Table 7.2 provides a brief description of each.

By joining the DMV and DMF, we have enough information to identify the queries
that spend the most time in the CLR, across all the databases on the server. The
query’s sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the text of
the SQL query. Note that unlike other similar queries, here we don’t obtain the
cached plan, because this query spends its time in the CLR. We use a common pat-
tern, as discussed in chapter 2, to extract the Individual Query, which the timings
relate to, from the Parent Query. An example of the type of output for this query is
shown in figure 7.4.

 The query we execute selects the top 20 queries that spend the most time in the
CLR, across all databases on the server. The total duration, time on the CPU, time

Listing 7.4 The queries that spend the most time in the CLR

Table 7.2 DMV/DMF to identify the queries that spend the most time in the CLR

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached
query plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given
sql_handle

Get CLR
duration

B

Extract SQL
statement C

Sort by time
in the CLR

D

www.it-ebooks.info

http://www.it-ebooks.info/

185Time-consuming CLR queries
waiting, number of reads, number of writes, name of the database, the Individual
Query, and the Parent Query are also output. The output is sorted by total_clr_time
in descending order. Note that the Individual Query given in the output contains
the CLR code, which is typically hosted in a SQL query statement.

7.4.2 Impact of time-consuming CLR queries

Typically, the column in the output named Individual Query will contain the name of
a CLR function. You’ll notice other columns in the output, including Time on CPU,
Time waiting, total_logical_reads, total_logical_writes, execution_count, and Database-
Name. The script provided could be amended to obtain other interesting information,
including the most-executed CLR queries, CLR queries with the most I/O, and CLR que-
ries with the most waiting. The script could also be filtered on a given database name.

 Often when you run code, you have an idea of where the performance bottleneck
is. Although experience is often valuable, there’s no substitute for profiling your code
to determine exactly where the real bottleneck is. I’m sure there will be times when
the bottleneck is in some unexpected area.

 Having identified the queries that spend the most time in the CLR, the next step
would be to identify the individual lines of code within the CLR function that take the
most time or could be a bottleneck.

 Unfortunately, SQL Server doesn’t provide a method of determining duration of
the individual lines of SQL CLR code. One reason for this is security. The way to get
around this limitation is to copy the CLR code into another Visual Studio project and
then insert debug timing-related code between the various lines of code (this is called
instrumentation). Running the code from a test client will output the timings between
the lines of code, enabling you to determine which lines of code are taking the lon-
gest to run.

 Alternately, there are high-end versions of Visual Studio that come with profiling
tools, for example, Visual Studio 2008 Developer Edition or Visual Studio 2010 Pre-
mium Edition. These editions contain tools for profiling your .NET code, enabling
you to easily determine the slowest parts of your code.

 Several third-party tools also provide performance metrics for your .NET code. A
well-known tool is supplied by Red Gate Software, called ANTS Performance Profiler.
Details about this tool, together with a 14-day free trial copy of the software, are avail-
able from Red Gate’s website.

Figure 7.4 Output showing the queries that spend the most time in the CLR
www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7 Common Language Runtime DMVs
 Typically, your CLR code will make minimum use of database access and data-
base manipulation, because this is what T-SQL excels at. But there are times when
the CLR code will need to perform data access operations; these will result in a cor-
responding increase in the number of reads and writes associated with the query.
Similarly, there will be times when the query will have to wait on another resource,
and this will be recorded in the Time waiting column in the output. Examining any
index’s usage may provide opportunities for improving performance by ensuring
the following:

■ Index statistics are up to date.
■ Indexes are not fragmented.
■ There are no missing indexes.
■ There are minimum indexes if an update is performed.

You’ve seen how to identify the queries that spend most of their time inside the
CLR. Although this is fine for getting an overall view, it can be useful to determine
the CLR usage during a given time interval or when a given query is run. This could
provide targeted tuning information for that specific time or query. I’ll show how
this is done next.

7.5 Queries spending the most time in the CLR
(snapshot version)
In addition to determining which queries spend the most time in the CLR, there may
be certain time periods when it’s critical to determine what processing is occurring
within the CLR with a view to optimizing it. Similarly, there may be occasions when you
need to know what CLR functionality is used when a given SQL query or batch of SQL
statements is run.

 There is a caveat with this approach (and some proposed solutions too). The DMV
sys.dm_exec_query_stats records information at the database level and thus will
record all other activity on the database. It’s possible to reduce the effect of external
influences by running your queries on a standalone database or at a time when you
know other queries won’t be running.

7.5.1 Finding queries that spend the most time in the CLR
(snapshot version)

Because the DMVs are accumulative, if you want to determine which queries spend
the most time within the CLR over a given time period, it makes sense to calculate the
difference between two DMV snapshots. The snapshots are taken at the start and
end of the time interval. Running the SQL script given in the next listing will iden-
tify the queries that use the CLR the most over a given 10-minute period, ordered by
CLR time.
www.it-ebooks.info

http://www.it-ebooks.info/

187Queries spending the most time in the CLR (snapshot version)
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

WAITFOR DELAY '00:10:00'

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) -
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
 AND p2.total_clr_time - ISNULL(p1.total_clr_time, 0) <>0
ORDER BY [CLR time] DESC

DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot

The DMV snapshot approach given in this example is based on the DMV snapshot
pattern explained more fully in chapter 2. The DMV and columns used are the same

Listing 7.5 The queries that spend the most time in the CLR (snapshot version)

Get pre-query
DMV counters

B

Do something here
(query/time interval)

C
Get post-query
DMV counters

D

Calculate changes
in CLR counters

E

Sort by time
spent in CLRF
www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 7 Common Language Runtime DMVs
as described in the previous script example. In this example, we take a pre-work
snapshot of the DMV query counters B, wait a given amount of time (10 minutes in
this example) C, and then take another snapshot of the DMV query counters D.
Finally we determine which CLR queries have run E, sorted by the CLR time F. If
you want to examine the CLR functions associated with a given SQL statement or
batch of SQL, you can replace the WAITFOR command given in the script with rele-
vant SQL statements.

 Sample output for this query is shown in figure 7.5.
 The output in figure 7.5 shows the queries that spend most of their time in the

CLR during a given time interval. We record information about the number of reads,
number of writes, time on CPU, time waiting, and database name.

 If you know that these queries are run at critical times, you can try to optimize
them by using the output columns to provide clues as to where to optimize. For exam-
ple, if a large number of reads are occurring, you’d want to ensure that the table’s
indexes are optimal (by checking for any missing indexes, that statistics are up to date,
and index fragmentation is low). Similarly, examining the wait states DMV might lead
you to discover why the queries are waiting (recorded in the Time blocked column).
This interplay between the different DMVs is discussed next.

7.6 Relationships between CLR DMVs and other DMVs
Up to now we’ve tended to look at CLR metrics in isolation. Although this is fine
while you gain an understanding of specific areas, you can get a better appreciation
of the impact of queries if you examine the effect of your queries on several DMVs at
the same time.

 In this section, we report on several DMV snapshots that illustrate the combined
effect of our CLR-based queries. This can be a useful starting point in correlating
the changes in the different DMVs and highlighting areas of concern and subse-
quent optimization.

 In common with previous scripts, here we’ll examine how the CLR queries interact
with other DMVs. Specifically we’ll look at how they interact with missing indexes, per-
formance counters, and wait states. Running the SQL script given in the following list-
ing will identify the relationship between the queries that use the CLR and the other
DMVs, over a given time interval. In this example, the time period is 10 minutes, but
you may want to alter this time interval to suit your needs.

Figure 7.5 Output showing the queries that spend most of the time in the CLR (snapshot version)
www.it-ebooks.info

http://www.it-ebooks.info/

189Relationships between CLR DMVs and other DMVs
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 g.index_group_handle, g.index_handle
 , s.avg_total_user_cost
 , s.avg_user_impact, s.user_seeks, s.user_scans
INTO #PreWorkMissingIndexes
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s
 ON s.group_handle = g.index_group_handle

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PreWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT
 wait_type, waiting_tasks_count
 , wait_time_ms, max_wait_time_ms, signal_wait_time_ms
INTO #PreWorkWaitStats
FROM sys.dm_os_wait_stats

WAITFOR DELAY '00:10:00'

SELECT wait_type, waiting_tasks_count, wait_time_ms
 , max_wait_time_ms, signal_wait_time_ms
INTO #PostWorkWaitStats
FROM sys.dm_os_wait_stats

SELECT [object_name], [counter_name], [instance_name]
 , [cntr_value], [cntr_type]
INTO #PostWorkOSSnapShot
FROM sys.dm_os_performance_counters

SELECT sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT g.index_group_handle, g.index_handle, s.avg_total_user_cost
 , s.avg_user_impact, s.user_seeks, s.user_scans
INTO #PostWorkMissingIndexes
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s
 ON s.group_handle = g.index_group_handle

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]

Listing 7.6 Relationships between DMVs and CLR queries

Pre-work missing
indexes counters

B

Pre-work query
stats counters

C

Pre-work
OS counters

D

Pre-work wait
states counters

E

Do something here
(query/time interval)

F

Post-work
snapshotsG

Calculate
snapshot deltas

H

www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 7 Common Language Runtime DMVs
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) -
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
 AND p2.total_clr_time - ISNULL(p1.total_clr_time, 0) <>0
ORDER BY [CLR time] DESC

SELECT
 p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) AS wait_time_ms
 , p2.signal_wait_time_ms - ISNULL(p1.signal_wait_time_ms, 0)
 AS signal_wait_time_ms
 , ((p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0)) –
 (p2.signal_wait_time_ms
 - ISNULL(p1.signal_wait_time_ms, 0))) AS RealWait
 , p2.wait_type
FROM #PreWorkWaitStats p1
RIGHT OUTER JOIN
#PostWorkWaitStats p2 ON p2.wait_type = ISNULL(p1.wait_type, p2.wait_type)
WHERE p2.wait_time_ms - ISNULL(p1.wait_time_ms, 0) > 0
 AND p2.wait_type NOT LIKE '%SLEEP%'
 AND p2.wait_type != 'WAITFOR'
ORDER BY RealWait DESC

SELECT
 ROUND((p2.avg_total_user_cost - ISNULL(p1.avg_total_user_cost, 0))
 * (p2.avg_user_impact - ISNULL(p1.avg_user_impact, 0)) *
 ((p2.user_seeks - ISNULL(p1.user_seeks, 0)) + (p2.user_scans –
 ISNULL(p1.user_scans, 0))),0) AS [Total Cost]
 , p2.avg_total_user_cost - ISNULL(p1.avg_total_user_cost, 0)
 AS avg_total_user_cost
 , p2.avg_user_impact - ISNULL(p1.avg_user_impact, 0) AS avg_user_impact
 , p2.user_seeks - ISNULL(p1.user_seeks, 0) AS user_seeks
 , p2.user_scans - ISNULL(p1.user_scans, 0) AS user_scans
www.it-ebooks.info

http://www.it-ebooks.info/

191Relationships between CLR DMVs and other DMVs
 , d.statement AS TableName
 , d.equality_columns
 , d.inequality_columns
 , d.included_columns
FROM #PreWorkMissingIndexes p1
RIGHT OUTER JOIN
#PostWorkMissingIndexes p2 ON p2.index_group_handle =
 ISNULL(p1.index_group_handle, p2.index_group_handle)
 AND p2.index_handle = ISNULL(p1.index_handle, p2.index_handle)
INNER JOIN sys.dm_db_missing_index_details d
 ON p2.index_handle = d.index_handle
WHERE p2.avg_total_user_cost - ISNULL(p1.avg_total_user_cost, 0) > 0
 OR p2.avg_user_impact - ISNULL(p1.avg_user_impact, 0) > 0
 OR p2.user_seeks - ISNULL(p1.user_seeks, 0) > 0
 OR p2.user_scans - ISNULL(p1.user_scans, 0) > 0
ORDER BY [Total Cost] DESC

SELECT
 p2.object_name, p2.counter_name, p2.instance_name
 , ISNULL(p1.cntr_value, 0) AS InitialValue
 , p2.cntr_value AS FinalValue
 , p2.cntr_value - ISNULL(p1.cntr_value, 0) AS Change
 , (p2.cntr_value - ISNULL(p1.cntr_value, 0)) * 100 / p1.cntr_value
 AS [% Change]
FROM #PreWorkOSSnapShot p1
RIGHT OUTER JOIN
#PostWorkOSSnapShot p2 ON p2.object_name =
 ISNULL(p1.object_name, p2.object_name)
 AND p2.counter_name = ISNULL(p1.counter_name, p2.counter_name)
 AND p2.instance_name = ISNULL(p1.instance_name, p2.instance_name)
WHERE p2.cntr_value - ISNULL(p1.cntr_value, 0) > 0
 AND ISNULL(p1.cntr_value, 0) != 0
ORDER BY [% Change] DESC, Change DESC

DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot
DROP TABLE #PostWorkWaitStats
DROP TABLE #PreWorkWaitStats
DROP TABLE #PreWorkOSSnapShot
DROP TABLE #PostWorkOSSnapShot
DROP TABLE #PreWorkMissingIndexes
DROP TABLE #PostWorkMissingIndexes

In this script we create DMV snapshots for missing indexes B, CLR queries C, perfor-
mance counters D, and wait states E. We then wait for a given time period to pass F.
The corresponding post-work DMV snapshots are then taken G. We follow this by cal-
culating and showing the changes in the DMVs’ counter values H.

 Inspecting the output of this script will enable you to discern if there’s any rela-
tionship between the DMV snapshots. As always, note that the DMVs typically record
server-wide information. This must be taken into account, reduced, or eliminated
when interpreting the results. It may be advisable to also include a DMV snapshot of
all queries that are running in the given time interval in order to eliminate or esti-
mate their influence.
www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 7 Common Language Runtime DMVs
Figure 7.6 shows an example of the type of output for this query.
 The output in figure 7.6 shows four grids, each representing a DMV snapshot over

the given time interval. The first shows the queries that spend the most time in the
CLR. The second grid shows the wait states changes, the third shows any missing
indexes, and the fourth shows the SQL Server performance counters. To get detailed
information about any of the specific DMV snapshots shown, see the relevant section
of this book for that DMV snapshot.

 Here we’re interested in any relationships between the DMV snapshots rather than
the individual DMV snapshots themselves. For example, a high Time blocked column
value in the first grid (CLR queries) might relate to the high value of the BACKUPIO
wait type in the second grid (wait_type). Similarly, if the queries access the database,
the queries may be in need of indexes, which are identified in the second grid (miss-
ing indexes). Many other potential relationships may exist and warrant further investi-
gation. Next, we’ll look at how to obtain information about the CLR running on your
SQL Server.

7.7 Getting information about SQL Server CLR integration
The DMV sys.dm_clr_properties is a name/value pair container that has a row for each
property related to the SQL Server CLR integration. Issuing a simple SELECT state-
ment against the DMV on my local SQL Server gives the results shown in figure 7.7.

Figure 7.6 Output showing the impact of CLR functions on DMV snapshots

Figure 7.7
Output showing SQL Server CLR
integration details
www.it-ebooks.info

http://www.it-ebooks.info/

193Getting information about your SQL CLR assemblies
The output shows the directory where the CLR is installed, its version, and its current
state. The state row is useful for determining the cause of any errors when CLR inte-
gration on the server isn’t working or is in a state of transition. The values of the state
row include the following:

■ Mscoree is not loaded (temporary state, when the server starts). Mscoree is a
DLL containing core .NET Framework functions.

■ Mscoree is loaded (temporary state, when the server starts).
■ Locked CLR version with mscoree (occurs when the hosted CLR isn’t being used

and thus hasn’t been initialized).
■ CLR is initialized. (This is the desired state. Note that you still might need to

enable CLR integration; for information on how to do this, see listing 7.2 in the
section “Using the SQL CLR regular expression functions.”)

■ CLR initialization permanently failed. (Memory pressure is the most typical
cause, followed by communication failure between SQL Server and the CLR.)

■ CLR is stopped (occurs when SQL Server is shutting down).

Prior to version 4 of the CLR, various versions of the .NET Framework were released,
but starting with version 2, most provided additional libraries to extend the .NET
Framework rather than the underlying core CLR DLL, which remained at version 2.
Presumably, as later versions of the CLR are released, this DMV will contain version-
specific details.

 Let’s now look at how you can obtain specific information about the SQL CLR
assemblies you’ve deployed.

7.8 Getting information about your SQL CLR assemblies
You can discover some useful information about the installed SQL CLR assemblies by
combining the CLR-based DMVs with the assembly system tables. The script you use to
obtain information about SQL CLR assemblies follows.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME(d.db_id) AS DatabaseName
 , USER_NAME(d.user_id) UserName
 , a.name AS AssemblyName
 , f.name AS AssemblyFileName
 , a.create_date AS AssemblyCreateDate
 , l.load_time AS AssemblyLoadDate
 , d.appdomain_name
 , d.creation_time AS AppDomainCreateTime
 , a.permission_set_desc
 , d.state
 , a.clr_name
 , a.is_visible

Listing 7.7 Obtaining information about SQL CLR assemblies
www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 7 Common Language Runtime DMVs
FROM sys.dm_clr_loaded_assemblies AS l
INNER JOIN sys.dm_clr_appdomains d
 ON l.appdomain_address = d.appdomain_address
INNER JOIN sys.assemblies AS a
 ON l.assembly_id = a.assembly_id
INNER JOIN sys.assembly_files AS f
 ON a.assembly_id = f.assembly_id
ORDER BY DatabaseName, UserName, AssemblyName

Here you can see that two DMVs and two system tables are involved in obtaining SQL
CLR assembly information. A brief description of each is given in table 7.3.

The joining of the DMVs and system tables provides you with enough data to obtain
information about SQL CLR assemblies, across all databases on the server. The DMVs
sys.dm_clr_loaded_assemblies and sys.dm_clr_appdomains are joined on their com-
mon key column appdomain_address. The system table sys.assemblies is joined to the
sys.dm_clr_loaded_assemblies DMV on their common key assembly_id. Finally, the sys-
tem table sys.assembly_files is joined to the system table sys.assemblies on their com-
mon key assembly_id.

 Sample output for this query is shown in figure 7.8.
 The output can be useful in determining which assemblies are loaded on which

databases, where they’re physically located, what version of the assembly is present,
and the permissions set required by the assemblies.

Table 7.3 DMVs/system tables for getting SQL CLR information

DMV/table Description

sys.dm_clr_loaded_assemblies Shows which managed user assemblies have been
loaded

sys.dm_clr_appdomains Shows details of loaded application domains, including
their state, creation date, name, and the database they
reside in

sys.assemblies Contains details of the assembly’s name, its unique
CLR name, its creation date, and the permissions set
for the assembly

sys.assembly_files Shows details of where the assembly is installed,
together with the contents of the assembly

Figure 7.8 Output showing detailed SQL CLR assembly information
www.it-ebooks.info

http://www.it-ebooks.info/

195Summary
7.9 Summary
In this chapter we discussed how SQL functionality has been extended by integrating
CLR functionality into SQL Server. I created a simple CLR class with regular expression
functionality, which illustrated how this extra functionality can be provided relatively
easily. We created, built, deployed, and tested the CLR class. I showed how various
aspects of the class could be discerned via SSMS or third-party tools, including the
Reflector tool.

 One of the prime aims of this book is to look at SQL performance from a different
angle, namely, via DMVs. In discussing CLR SQL functions, it makes sense to look at
aspects of CLR performance that are known to cause problems, allowing you to pro-
duce better CLR code.

 As with other SQL queries discussed in other chapters, this chapter allowed you to
discover which queries spend most of the time in the CLR. I also provided a DMV snap-
shot version of this script and subsequently extended it to examine the relationships
between other related DMVs. Finally, we looked at how to obtain SQL CLR integration
information and details of the various assemblies running in SQL Server.

 Blocking is an important consideration in examining performance problems,
especially within the context of transactions. We’ll look at this next.
www.it-ebooks.info

http://www.it-ebooks.info/

Resolving
transaction issues
A query may run fast when it runs alone, taking advantage of all available resources
without the impact of other running queries. But in the real world it needs to inter-
act with other running queries, each requiring resources and coordination to
reduce contention.

 To enable queries to run concurrently, resources need to be shared, and data
needs to be protected so it’s able to give consistent and correct values. Therefore,
there’s often a trade-off between data consistency and concurrency. Many factors
can affect both consistency and concurrency, and we’ll discuss these throughout
this chapter.

 To protect the consistency of data, SQL Server issues locks against resources
such as a row or page of data within a database table. These locks can lead to
blocking, resulting in reduced performance, concurrency, and scalability. Circu-
lar blocking between queries can lead to a deadlock, which results in SQL Server
terminating one of the queries and rolling back its changes.

This chapter covers
■ Transactions, locks, blocks, and deadlocks
■ Sessions, connections, and requests
■ Methods to minimize contention and improve

concurrency and performance
196

www.it-ebooks.info

http://www.it-ebooks.info/

197Transaction overview
 A transaction is a unit of work. A unit of work is a set of SQL queries that are
treated as a unit; for example, either they all commit or none of them commit their
changes to the database. You can consider the movement of money from one bank
account to another as two pieces of work, but to ensure consistency, they’re treated as
a single unit of work, or one transaction.

 Transactions affect how units of work are carried out; this influences the locking
strategy and subsequent blocking. Locks are held by transactions. To ensure that the
data used or modified by two or more queries is consistent, locks are taken out on the
underlying data.

 Before we can get into some interesting and useful scripts, it makes sense to exam-
ine the features that will allow you to understand more fully the output from the scripts.
We’ll do this in the following sections, starting with an overview of transactions.

8.1 Transaction overview
A database transaction is a group of SQL queries that are treated as a single unit of
work. If any one of the queries fails, the whole group of SQL queries is treated as
failed, and any data changed by the queries is rolled back, leaving the database in the
same position as before these queries ran.

 By default, each SQL statement is treated as a transaction. It’s possible to enroll a
group of SQL queries into a transaction with the keywords BEGIN TRAN. If the queries
are successful, the transaction is committed using the keyword COMMIT, and if the
queries are unsuccessful, any changes are removed using the keyword ROLLBACK. A
typical pattern used to implement this approach is given in the following listing.

BEGIN TRY
 BEGIN TRAN
 SELECT 1/0
 PRINT 'Success'
 COMMIT
END TRY
BEGIN CATCH
 ROLLBACK
 PRINT 'An error has occurred'
END CATCH

This code starts with the keywords BEGIN TRY, which is the start of the error-handling
block. A transaction is initiated with the keywords BEGIN TRAN. What follows next
is typically a group of SQL queries that you want to treat as a unit of work. In this
example, for illustrative purposes the command SELECT 1/0 will cause an error to
be raised. The raised error causes the execution of the code to jump into the
BEGIN CATCH block. Here, the transaction is rolled back (ROLLBACK keyword), and
an error message is printed. If the statement SELECT 1/0 is replaced with SELECT
1/1, the code executes successfully and the transaction is committed (via the key-
word COMMIT).

Listing 8.1 Transaction processing pattern
www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 8 Resolving transaction issues
NOTE In the real world, the transaction would encompass a group of queries
that would modify the underlying data. For illustrative purposes, our example
contains only a few simple SQL statements.

Each SQL query, even a simple SELECT, takes out locks on various structures within the
database (we’ll discuss these structures shortly). By grouping queries within a transac-
tion, we typically increase the amount and scope of these locks, resulting in potentially
more blocking, decreased performance (of the other queries), and less concurrency.
Toward the end of this chapter we’ll examine ways in which these locks and blocking
can be reduced, with a view to allowing greater concurrency, performance, and scal-
ability while balancing any reduction in data consistency.

 As you can see, the cost of providing data consistency is reduced performance (even
if nothing else is running, a query will still issue locks) and reduced concurrency.

 As a general point, in our example scripts we’ll often obtain the individual
SQL queries involved in the blocking. Note that the locks may have been taken
out by earlier SQL statements, because the transaction may apply across batches of
SQL queries.

8.2 A simple transaction-based case study
In order to discuss the impact of locks and blocking in this chapter, I want to intro-
duce a simple case study, which will be used in the subsequent example scripts. If you
want to follow the output produced by the subsequent scripts given in this chapter, be
sure to run the following scripts as detailed.

 First, run the script given in the following listing within SQL Server Management
Studio (SSMS). The script creates a test database (named IWS_TEMP), changes your
SSMS session to this newly created database, and creates a single table (named
dbo.tblCountry).

CREATE DATABASE IWS_Temp
GO

USE IWS_Temp

CREATE TABLE [dbo].[tblCountry](
 [CountryId] [int] IDENTITY(1,1) NOT NULL,
 [Code] [char](3) NOT NULL,
 [Description] [varchar](50) NOT NULL)

Next, open another window in SSMS, and enter and run the script given in listing 8.3.
The script changes the SSMS window to use your newly created database, and then a
new transaction is started (with the BEGIN TRANSACTION command). Then it inserts
a single row into the tblCountry table.

Listing 8.2 Creating the sample database and table
www.it-ebooks.info

http://www.it-ebooks.info/

199A simple transaction-based case study
USE IWS_TEMP

BEGIN TRANSACTION

INSERT INTO [dbo].[tblCountry] ([Code], [Description])
VALUES('ENG', 'ENGLAND')

Because this transaction has been started but not committed or rolled back, it’s
described as open. This means it contains locks against the table dbo.tblCountry that
will impact other queries that run against this table. This will allow us to investigate
and discuss the impact of locks, blocking, and transactions.

 Open another window in SSMS, and enter and run the script given in listing 8.4.
The SQL query changes the SSMS window to use your newly created database and
then attempts to select data from the tblCountry table. Notice that the query doesn’t
complete; this is because it conflicts with the session that’s inserting a row but has
not committed or rolled back its open transaction.

USE IWS_TEMP

SELECT * FROM [dbo].[tblCountry]

You can look at the locks that have been taken out by the previous two queries (the
insert and select queries) by entering and running the script given in the following
listing in SSMS.

SELECT DB_NAME(resource_database_id) AS DatabaseName, request_session_id
 , resource_type, request_status, request_mode
FROM sys.dm_tran_locks
WHERE request_session_id !=@@spid
ORDER BY request_session_id

The script decodes the database name from the supplied resource_database_id. It dis-
plays the session id (request_session_id), which maps to the two windows within SSMS
that are running the two sessions. Note that this session_id represents the process id
(spid) discussed in previous chapters. The resource that’s being locked (resource_
type) or requested, together with the request_mode, is also shown. The results are
sorted by request_session_id.

 An example of the output from this script is shown in figure 8.1.
 Don’t worry if you don’t understand all these terms and their values at the moment;

all will be revealed as we progress with this chapter.
 In outline, the output shows that session 52 (the one that contains BEGIN TRANS)

is requesting an exclusive lock (request mode of X) on a given row (resource_type of
RID), and various other less-restrictive locks have been taken on the page and data-
base. All the locks for session 52 have been granted (request_status of GRANT).

Listing 8.3 Starting an open transaction

Listing 8.4 Selecting data from a table that has an open transaction against it

Listing 8.5 Observing the current locks
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 Resolving transaction issues
Meanwhile, session 53 (the one that’s trying to select from tblCountry) is issuing a
shared lock (request mode of S) on a given row (resource_type of RID), but it’s still
waiting to get that lock (request_status of WAIT). Again, session 53 has various other
less-restrictive locks that have been taken on the page and database.

 We’ll discuss the output in greater detail later, in section 8.7, when I’ve given a bet-
ter explanation of locking, blocking, and deadlocks, which follows next.

8.3 Locks, blocks, and deadlocks
The terms locks, blocks, and deadlocks are often used incorrectly. Although the terms are
related, each has a specific meaning. When data is being queried, locks are taken out
on the underlying data to ensure data consistency. For example, you wouldn’t want
two people updating the same data at the same time. If a user issues an update query,
the data related to the query will be protected by locks; this may cause another user to
wait until the first query has finished doing its work. The second user’s query will be
blocked by the first user’s query. If two queries are holding locks on resources that the
other query wants, resulting in circular blocking, SQL Server will detect it as a dead-
lock. There’s no nice way out of a deadlock, so SQL Server terminates one of the que-
ries and rolls back its transaction.

 You can see the link between locks, blocks, and deadlocks. We’ll now examine
these in greater detail, starting with locks.

8.3.1 Locks

Locks in SQL Server are normal and to be expected. Locks can be taken out at various
levels of the database structural hierarchy, affecting the scope of the locks. At the top
level is the database itself; at the bottom level is an individual row of data. When we
examine the locks via the DMVs later, in section 8.7, you’ll see which locks have been
taken out on which database structures. A brief overview of the structures that can be
locked is given in table 8.1.

Figure 8.1 Output showing details of locks between sessions over various
resources
www.it-ebooks.info

http://www.it-ebooks.info/

201Locks, blocks, and deadlocks
Locks can be taken out at various levels within this structural hierarchy, and each lock
can have a different impact via its severity (for example, an exclusive lock is more
restrictive than a shared lock).

 The different types of lock that can be taken are listed in table 8.2. The letter(s)
given in parentheses after the lock type represent how the lock type is shown in the
columns of the various transaction/lock-related DMVs.

Table 8.1 Database structure hierarchy

Structure Description

Database This structure represents the database. Locks held against the database can be
most restrictive for concurrency but optimal for data consistency.

Table Within the database, locks can be taken out on individual tables.

Heap or B-tree Heaps are tables without a clustered index. A B-tree object typically refers to a
partition.

Extent An extent is a group of contiguous pages.

Page A page holds rows of data.

Key A key is a row within an index.

Row A row is a single row of data within a table.

Table 8.2 Types of lock

Lock type Description

Shared (S) Used for read-only queries. Other read-only queries can
access the data concurrently, but modifying queries
(DELETE, UPDATE, INSERT) are prevented, to ensure data
consistency. By default, the shared lock is released after the
data has been read.

Update (U) This lock means the data is being read with the aim of modify-
ing the data. It applies to an UPDATE query, which can be
viewed as a SELECT to get the data and then an UPDATE to
modify it. Other queries that have a shared lock on this data
can run concurrently.

Exclusive (X) Exclusive access to a resource. This ensures only one query
can INSERT/DELETE/UPDATE the data at any given time.
Other queries can't access the data being modified.

Intent shared (IS) Indicates a shared lock has been taken at a lower level in the
resource hierarchy.

Intent exclusive (IX) Indicates an exclusive lock has been taken at a lower level in
the resource hierarchy.

Shared with intent exclusive (SIX) Indicates an intent exclusive lock has been taken at a lower
level in the resource hierarchy.
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 8 Resolving transaction issues
A NOTE ABOUT THE INTENT LOCKS When a lock is taken on a relatively low-level
object, for example, a row or a page, related intent locks are also taken in the
higher-level object in the database structure hierarchy. This enables SQL
Server to determine quickly, using the higher-level information, whether any
new query will cause potential locking conflicts on the lower levels.

Locking uses resources, and coordination is needed to manage any conflicts. As the
number of locks taken out by a query increases, this coordination can become more
difficult. In this case, SQL Server will often escalate a lock held on a low-level
resource to a higher level, for example, from a row lock to a page lock. The locks
that were held at the lower level are then released. This results in the use of fewer
resources but also potentially more blocking (and less concurrency) because the
whole page of rows is now locked. Lock escalation typically occurs when more than
5,000 locks have been taken. We’ll discuss lock escalation and its implications toward
the end of this chapter.

 Now that you’ve seen the database structures that can be locked and the dif-
ferent types of locks that can be taken out, we’re in a position to examine blocks
and deadlocks.

8.3.2 Blocks

Blocking is a consequence of locking. When a query runs, locks are taken out on
resources to ensure consistency of data. But when another query wants to access
the same resources, it may be blocked, leading to decreased performance and
less scalability.

NOTE Some of these blocks are recorded as waits on locked resources (see
the code in chapter 6 for more details on how to view these). It’s possible to
use these waits to determine whether locking is a consistent and important
problem needing attention.

Often the terms blocking and waiting are used interchangeably. Blocking is a specific
type of waiting that relates to locks. Blocking is a subset of waiting.

Schema modification (Sch-M) Typically this is acquired when a query wants to modify a
table. This lock prevents other queries from accessing
the table.

Schema stability (Sch-S) This lock is typically taken when a query needs access to
metadata about a table, for example, for query compilation.

Bulk update (BU) Relates to bulk load operations.

Key range Relates to holding locks across a wider range of rows
than normal.

Table 8.2 Types of lock (continued)

Lock type Description
www.it-ebooks.info

http://www.it-ebooks.info/

203Locks, blocks, and deadlocks
 By default, SQL Server will wait until the blocking has finished before proceeding.
If the client is a Windows or web client, the blocked query typically waits a given time
before failing with a timeout error.

 It’s also possible to record blocking that occurs for longer than a given time
period by setting the blocked process threshold within the system configuration.
This enables SQL Profiler to record details of any blocks that occur over the given
wait threshold.

 It’s also possible to record details of blocking via the SQL Server performance
counters. More details about how to do this, together with the meaning of these coun-
ters, are given in chapter 6.

 Blocking and waiting are similar concepts and the terms are typically interchange-
able. With this in mind, it might be profitable to also look at chapters 4 and 5 for the
wait-related scripts.

8.3.3 Deadlocks

Deadlocks are an extreme version of blocking, where typically two queries each hold
a lock on a resource and each then requires the resource held by the other query.
Deadlocks can be thought of as circular blocking. It’s possible to discover which SQL
queries were involved in the deadlock by turning on trace flag 1222 either as part of
the SQL Server startup script or from within SSMS, using the following command:
DBCC TRACEON (1222, -1). In the latter case, the trace flag is on only until SQL
Server is restarted.

 If trace flag 1222 is on when a deadlock occurs, information about the dead-
lock is written to the SQL Server error log. The log includes details of the individ-
ual queries involved in the deadlock, together with their stack trace, details of the
resources involved in the deadlock, the transaction isolation level, the sql_handle,
and the plan_handle (so you can get the SQL query and the cached plan from the
DMVs if needed).

 Because deadlocks can occur because of scheduling conflicts, for example, when
two SQL batches are accessing similar resources at the same time, it’s possible to cap-
ture the error in a TRY/CATCH block and resubmit the query. An example of this is
given in listing 8.6. Note that in SQL Server 2008 you can enter an initial value for a
variable on the same line as its declaration. You’ll need to change this if you’re using
SQL Server 2005. Also note that you should replace dbo.SomeRoutine with the name
of your routine.

DECLARE @CurrentTry INT = 1
DECLARE @MaxRetries INT = 3
DECLARE @Complete BIT = 0

WHILE (@Complete = 0)
BEGIN
 BEGIN TRY

Listing 8.6 Template for handling deadlock retries

Try blockB
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 Resolving transaction issues
 EXEC dbo.SomeRoutine
 SET @Complete = 1
 END TRY
 BEGIN CATCH
 DECLARE @ErrorNum INT
 DECLARE @ErrorMessage NVARCHAR(4000)
 DECLARE @ErrorState INT
 DECLARE @ErrorSeverity INT

 SET @ErrorNum = ERROR_NUMBER()
 SET @ErrorMessage = ERROR_MESSAGE()
 SET @ErrorState = ERROR_STATE()
 SET @ErrorSeverity = ERROR_SEVERITY()

 IF (@ErrorNum = 1205) AND (@CurrentTry < @MaxRetries)
 BEGIN
 IF @@TRANCOUNT > 0
 ROLLBACK TRANSACTION
 SET @CurrentTry = @CurrentTry + 1
 WAITFOR DELAY '00:00:10'
 END
 ELSE
 BEGIN
 IF @@TRANCOUNT > 0
 ROLLBACK TRANSACTION
 SET @Complete = 1
 RAISERROR ('An error has occurred'
 , @ErrorSeverity
 , @ErrorState)
 END
 END CATCH
END

In the example given, the routine named dbo.SomeQuery is executed. If an error is
raised within the TRY block B, execution is passed to the CATCH block C. Here, the
error code is examined; if its value is 1205, it means a deadlock has occurred D. In
the case of a deadlock, any transactions are rolled back, the query waits a given time
period, and then the query is re-executed. This is attempted a given number of times
(three times in the example). If a deadlock still occurs, a message can be logged and
the code exited with a RAISERROR E.

 Please note that this example is only a template used to indicate the flow of pro-
cessing. In a real-world implementation, better logging would be required.

 Every five seconds or so, the deadlock manager runs, looking for blocks that can’t
be resolved because they are deadlocks. SQL Server chooses one of the queries to ter-
minate and roll back; this is usually the query that’s easiest to roll back, for example,
the one that has done the fewest updates. You can influence which query is rolled
back when a deadlock is detected by setting a deadlock priority indicator in the query.
An example of this is SET DEADLOCK_PRIORITY LOW. Other values include NORMAL
and HIGH. In SQL Server 2008, you can use a number in the range -10 to 10 to indi-
cate a finer-grained deadlock priority.

Catch errorC

Handle
deadlock

D

Raise
error

E

www.it-ebooks.info

http://www.it-ebooks.info/

205Transaction isolation levels
 You can also obtain details relating to deadlocks via the SQL Server performance
counters. More details about how to do this, together with the meaning of these coun-
ters, is given in chapter 6.

 Later, at the end of this chapter, we’ll discuss how blocking can be reduced and, by
extension, how deadlocks can be reduced.

 Other important aspects that are useful in understanding transactions are typically
ascribed as the ACID properties of transactions. We’ll discuss these next.

8.4 The ACID properties of transactions
Transactions are often described as having ACID properties. The initialism ACID repre-
sents the atomic, consistent, isolated, and durable properties of transactions. An over-
view of each of the ACID properties is given in table 8.3.

NOTE The isolation level in particular impacts the locks taken on resources,
and you can influence this within your queries and change how queries interact.

Having discussed the ACID properties of transactions, we’ll now investigate the iso-
lated property, with particular reference to its values and how it impacts locking.

8.5 Transaction isolation levels
The lock types described previously protect the data being queried from the
impact of other concurrently running queries. The level of isolation between
concurrent queries can also be affected by the isolation level of the query. For
example, it’s possible to read uncommitted data that’s currently involved in an
update transaction. The isolation level is typically set using the SQL keywords SET
TRANSACTION ISOLATION LEVEL; we’ve used this repeatedly in our scripts to pre-
vent unnecessary locking.

 An overview of the different types of isolation levels and their impact is given in
table 8.4. The first four entries are most commonly used; they specify isolation level
in terms of increasing restriction. The latter two entries are currently relatively lit-
tle used.

Table 8.3 ACID requirements

Property Description

Atomic The group of queries is treated as a unit; either they are all successful or none of
them are.

Consistent After the transaction has been committed or rolled back, the database must be
in a consistent state (for example, indexes updated, constraints satisfied).

Isolated A transaction shouldn’t interact with uncommitted data of other transactions. It
should behave as if it’s the only transaction running.

Durable Any changes made are durable.
www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 Resolving transaction issues
Often, the more restrictive the isolation level, the greater the performance of a given
query, but the worse the performance and scalability of other queries or the system as
a whole.

 You can set the isolation level for a given batch of SQL queries. Similarly, you can
do the same thing by implementing table hints on individual tables within the queries.
A common technique for reporting-based queries is to set the isolation level to Read
Uncommitted or implement the corresponding NOLOCK table hint. Notice in most of
our DMV scripts that the first statement sets the transaction isolation level to Read
Uncommitted; this ensures that the script doesn’t hold any locks and doesn’t get
delayed by any locks.

 Having discussed the various transaction isolation levels, next we’ll discuss sessions,
connections, and requests, because these tie the locks to the running queries.

8.6 Sessions, connections, and requests
In this section we’ll briefly discuss sessions, connections, and requests because they
provide valuable information for discussing transaction and locks next in this chapter.
Each is represented by a corresponding DMV.

Sessions contain information about the client and host, for example, when the ses-
sion started, the program used to start the session (such as Microsoft Office), the
hostname (name of the client workstation initiating the session), the login name, and
if any requests are running for this session. The associated DMV is named sys.dm_
exec_sessions. A session can have one or more connections.

 A connection contains information about connections established to SQL Server,
for example, the method of connection and the number of reads and writes. The
associated DMV is named sys.dm_exec_connections. A connection can have one or
more requests.

Table 8.4 Isolation levels

Isolation level Description

Read Uncommitted This causes SELECT statements to ignore most locks and not take out
any locks.

Read Committed This is the default isolation level. A query will wait until data has been
committed or rolled back before SELECTing it.

Repeatable Read Any locks caused by SELECTs are held until the end of the transaction.

Serializable Locks are taken out not only on the rows being selected/updated but
also on nearby rows; this prevents the insertion of data that might affect
the query.

Read Committed
Snapshot

This relates to keeping a copy of any prechanged data, enabling better
concurrency. Statement based.

Snapshot This relates to keeping a copy of any prechanged data, enabling better
concurrency. Transaction oriented.
www.it-ebooks.info

http://www.it-ebooks.info/

207Finding locks
 A request contains information about SQL queries executing on SQL Server, for
example, the id of the SQL query executing, its start time, its status, the id of any ses-
sion blocking it, and the reason for any waiting. The associated DMV is named
sys.dm_exec_requests.

 You can see what information is contained in these DMVs, together with the rela-
tionships between them, by running the script given in the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT *
FROM sys.dm_exec_sessions s
LEFT OUTER JOIN sys.dm_exec_connections c
 ON s.session_id = c.session_id
LEFT OUTER JOIN sys.dm_exec_requests r
 ON c.connection_id = r.connection_id
WHERE s.session_id > 50

A LEFT OUTER JOIN is used to link the session and connection because there may not
be a connection for the corresponding session. Similarly, a LEFT OUTER JOIN is used
to link the connection and request because there may not be a request for the corre-
sponding connection. In both cases, you can see the maximum amount of informa-
tion that’s present. We look only at sessions that have a session_id greater than 50; this
is because session_id values up to 50 are system session_ids, and we’re typically inter-
ested only in our application sessions.

 Both the session and request DMVs provide column values for the various environ-
mental settings, for example, Arithabort and Ansi_Nulls. Examination of these values
can prove very insightful when investigating why SQL queries run slower in SSMS com-
pared with other clients such as Excel.

 Now that we’ve discussed the theory background, you should be in a better posi-
tion to interpret and understand the output from some useful scripts relating to trans-
action, locking, and blocking.

8.7 Finding locks
Earlier in this chapter, while introducing the simple transaction-based case study, I ran
a simple query to show details of locks between queries over various resources. The
purpose of this section is to explain in more detail the output and give you a better
understanding of locks. The following discussion relates to the simple case study given
at the start of this chapter, so ensure that you have this running if you want to follow
the discussion. Once you understand how to interpret the output, it will help in
understanding more complex situations.

 The script we use to discover which locks are currently held follows.

Listing 8.7 Information contained in sessions, connections, and requests
www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 Resolving transaction issues
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT DB_NAME(resource_database_id) AS DatabaseName
 , request_session_id
 , resource_type
 , CASE
 WHEN resource_type = 'OBJECT'
 THEN OBJECT_NAME(resource_associated_entity_id)
 WHEN resource_type IN ('KEY', 'PAGE', 'RID')
 THEN (SELECT OBJECT_NAME(OBJECT_ID)
 FROM sys.partitions p
 WHERE p.hobt_id = l.resource_associated_entity_id)
 END AS resource_type_name
 , request_status
 , request_mode
FROM sys.dm_tran_locks l
WHERE request_session_id !=@@spid
ORDER BY request_session_id

The script involves a single DMV, sys.dm_tran_locks. The database id is resolved into
the underlying database name using the SQL function DB_NAME. Similarly, the under-
lying resource name is resolved in the CASE statement, decoding the resource_type to
the appropriate resource being locked B. In this case, the contended resource is the
table tblCountry.

 Sample output for this query is shown in figure 8.2.
 The output shows the contention between our two sessions; note that your session

ids may be different. Session 51 contains the BEGIN TRANSACTION statement
together with the INSERT statement. Because it ran first, it has taken out an exclusive
lock on the row; this is shown in the second row of the output. The resource type is
RID (row id), which indicates a row-level lock; the request_mode of X shows it’s an
exclusive lock. In order to help prevent conflicts from occurring, locks with lesser
impact are taken in objects above the row in the database structure hierarchy. In this
case, you can see that session 51 has an intent exclusive lock (IX in the request_mode
column) on the PAGE resource. Similarly, the database itself has a shared (S) lock.

Listing 8.8 How to discover which locks are currently held

Decode
resource

B

Figure 8.2 Output showing which locks are currently held
www.it-ebooks.info

http://www.it-ebooks.info/

209Identifying the contended resources
Where possible, the resource involved has been decoded (tblCountry in the output).
All the locks have been granted for session 51 (the request_status column has a value
of GRANT in the output for each row that belongs to session 51).

 Session 54 contains the SELECT statement; you can see that it has a request_status
of WAIT. In essence, it’s trying to issue a share lock (S) at the row level, but it’s unable
to be granted because session 51 hasn’t committed its transaction. Higher objects in
the database structure hierarchy for session 54 have issued share (S) and intent share
(IS) locks, and these have been granted.

 Sometimes, if many rows are being locked, SQL Server will escalate the many
row-level locks to higher-level page-level locks. Although this can be more restrictive
for other SQL queries, it uses fewer resources and improves the performance of the
current SQL query. We discuss lock escalation in further detail toward the end of
this chapter.

 An UPDATE SQL query involves a SELECT to obtain the data and then an UPDATE
to change the data. During the transition between these modes, it’s possible to see a
status of CONVERT in the column request_status.

 Having discussed the typical output from conflicting queries, we’ll now examine
the specific contended resources.

8.8 Identifying the contended resources
Although it’s interesting to get a complete picture of the locks taken out by transac-
tions on different objects within the database object hierarchy, oftentimes you’ll want
to see just details of the specific contended resources (in much the same way that a
script in an earlier chapter presented details of only which SQL queries are running,
in contrast with all the details produced by sp_who2).

 Seeing the details of contention should allow you to quickly target the rele-
vant resources and SQL queries for further investigation, with a view to reducing
this contention.

8.8.1 Contended resources—basic version

The script we use to find only the contended resources is shown in the follow-
ing listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 tl1.resource_type,
 DB_NAME(tl1.resource_database_id) AS DatabaseName,
 tl1.resource_associated_entity_id,
 tl1.request_session_id,
 tl1.request_mode,
 tl1.request_status
 , CASE
 WHEN tl1.resource_type = 'OBJECT'

Listing 8.9 How to identify contended resources

Decode
resource
www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8 Resolving transaction issues
 THEN OBJECT_NAME(tl1.resource_associated_entity_id)
 WHEN tl1.resource_type IN ('KEY', 'PAGE', 'RID')
 THEN (SELECT OBJECT_NAME(OBJECT_ID)
 FROM sys.partitions s
 WHERE s.hobt_id = tl1.resource_associated_entity_id)
 END AS resource_type_name
FROM sys.dm_tran_locks as tl1
INNER JOIN sys.dm_tran_locks as tl2
 ON tl1.resource_associated_entity_id = tl2.resource_associated_entity_id
 AND tl1.request_status <> tl2.request_status
 AND (tl1.resource_description = tl2.resource_description
 OR (tl1.resource_description IS NULL
AND tl2.resource_description IS NULL))
ORDER BY tl1.resource_associated_entity_id, tl1.request_status

Here a single DMV, self joined B, is involved in identifying the resources in conten-
tion; a brief description of it is given in table 8.5.

In the script the DMV sys.dm_tran_locks is joined to itself B based on its key columns
of resource_associated_entity_id and resource_description. Because locks will exist
for both the query that has the lock and the query that wants the lock, we retrieve
results where the request_status isn’t the same. This allows us, for example, to retrieve
details of queries that have a GRANT lock and a WAIT lock on a given resource.

 Figure 8.3 provides an example of the type of output for this query.

Although knowing which resources are in contention is useful, including details of
the SQL queries involved should prove useful in pinpointing the location in the
SQL query of the area of contention. A script that provides this information fol-
lows next.

8.8.2 Contended resources—enhanced version

The script given in the following listing will provide details of both the batch of
SQL included (or a stored procedure) and the Individual Query being executed (or
attempting to execute).

Table 8.5 DMV used to find contended resources

DMV Description

sys.dm_tran_locks Contains details of locks held by transactions

Self join of
sys.dm_tran_locks

 B

Figure 8.3 Output showing contended resources
www.it-ebooks.info

http://www.it-ebooks.info/

211Identifying the contended resources
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 tl1.resource_type
 , DB_NAME(tl1.resource_database_id) AS DatabaseName
 , tl1.resource_associated_entity_id
 , tl1.request_session_id
 , tl1.request_mode
 , tl1.request_status
 , CASE
 WHEN tl1.resource_type = 'OBJECT'
 THEN OBJECT_NAME(tl1.resource_associated_entity_id)
 WHEN tl1.resource_type IN ('KEY', 'PAGE', 'RID')
 THEN (SELECT OBJECT_NAME(OBJECT_ID)
 FROM sys.partitions s
 WHERE s.hobt_id = tl1.resource_associated_entity_id)
 END AS resource_type_name
 , t.text AS [Parent Query]
 , SUBSTRING (t.text,(r.statement_start_offset/2) + 1,
 ((CASE WHEN r.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), t.text)) * 2
 ELSE r.statement_end_offset
 END - r.statement_start_offset)/2) + 1) AS [Individual Query]
FROM sys.dm_tran_locks as tl1
INNER JOIN sys.dm_tran_locks as tl2
 ON tl1.resource_associated_entity_id = tl2.resource_associated_entity_id
 AND tl1.request_status <> tl2.request_status
 AND (tl1.resource_description = tl2.resource_description
 OR (tl1.resource_description IS NULL
AND tl2.resource_description IS NULL))
INNER JOIN sys.dm_exec_connections c
 ON tl1.request_session_id = c.most_recent_session_id
CROSS APPLY sys.dm_exec_sql_text(c.most_recent_sql_handle) t
LEFT OUTER JOIN sys.dm_exec_requests r ON c.connection_id = r.connection_id
ORDER BY tl1.resource_associated_entity_id, tl1.request_status

In the listing, three DMVs and a single DMF are involved in identifying the resources
and queries involved in contention. A brief description of them is given in table 8.6.

Listing 8.10 How to identify contended resources, including SQL query details

Table 8.6 DMVs/DMF used to find contended resources and queries

DMV/DMF Description

sys.dm_tran_locks Contains details of locks held by transactions

sys.dm_exec_connections Contains details of connections to SQL Server

sys.dm_exec_requests Contains details of requests executing on SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle

Decode
resource

Self join of
sys.dm_tran_locks

 B
www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 8 Resolving transaction issues
In the script the DMV sys.dm_tran_locks is joined to itself B based on its key columns
of resource_associated_entity_id and resource_description. Because locks will exist
for both the query that has the lock and the query that wants the lock, we retrieve
results where the request_status isn’t the same. This allows us, for example, to retrieve
details of queries that have a GRANT lock and a WAIT lock on a given resource.

 An INNER JOIN is used to link the self join output with the sys.dm_exec_
connections DMV, on the key column of session_id. A CROSS APPLY with the DMF
sys.dm_exec_sql_text allows the Parent Query to be extracted. A LEFT OUTER
JOIN with the sys.dm_exec_requests DMV allows details of any executing individ-
ual queries to be extracted.

 An example of the type of output for this query is shown in figure 8.4.

The output shows both the contended resource (tblCountry) and the SQL queries
involved. For both sessions, the Parent Query is present. Because there’s no active
request for the session that begins a transaction but doesn’t commit or roll back, its
Individual Query column value is set to NULL. For the request that’s waiting, its Indi-
vidual Query value has been calculated and displayed.

 Knowing the Individual Queries (or just one query in this example), it’s possible to
examine why the blocking is occurring and take steps toward a resolution. Knowing
the SQL query involved, you can use the scripts in chapter 4 to obtain the cached
plans for the queries. Examining these will illustrate at a more granular level how the
queries are being fulfilled and should provide further input on how the blocking can
be reduced.

 Having looked at how we can target only those contended resources, we’ll now
look at idle transactions. These can have a dramatic impact on performance via lock-
ing and blocking if left unchecked.

8.9 Identifying inactive sessions with open transactions
Transactions increase the scope of locks, typically across multiple SQL queries, provid-
ing more opportunity for any potential blocking and a subsequent decrease in con-
currency and performance.

 An idle session with an open transaction is a session that has no request currently
running, is not active, but contains uncommitted work. Such transactions can increase
the possibility of blocking and performance degradation. Identifying these open
transactions will enable you to resolve some blocking problems and prevent others
from occurring.

Figure 8.4 Output showing contended resources and SQL queries
www.it-ebooks.info

http://www.it-ebooks.info/

213Identifying inactive sessions with open transactions
8.9.1 How idle sessions with open transactions arise

Sometimes during your testing, you might want to start a transaction, do some work,
and then based on the inspection of the results, either commit or roll back the trans-
action. This is a common pattern used by DBAs/developers. But it’s easy to get dis-
tracted by something else and leave the transaction open (yes, I’m guilty of doing this
too). An example of an open transaction is given earlier in this chapter, for illustrating
locks, in the simple case study section.

 This is easily corrected with a little forethought. If you know the information you’ll
need to commit or roll back the transaction, you can include this in your open trans-
action (perhaps with a NOLOCK hint on the SELECT statements) and use this to com-
mit or roll back the transaction programmatically.

 Another perhaps more serious version of this problem can occur when a SQL
query errors and because of inadequate error handling leaves the transaction open.
Using the script given in this section should identify the SQL query that contains this
type of error and allow you to correct it.

8.9.2 How to find an idle session with an open transaction

Open transactions can result in poor concurrency and reduced performance, owing
to the locks being held. Running the SQL script given in the next listing will identify
any idle sessions that have open transactions.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT es.session_id, es.login_name, es.host_name, est.text
 , cn.last_read, cn.last_write, es.program_name
FROM sys.dm_exec_sessions es
INNER JOIN sys.dm_tran_session_transactions st
 ON es.session_id = st.session_id
INNER JOIN sys.dm_exec_connections cn
 ON es.session_id = cn.session_id
CROSS APPLY sys.dm_exec_sql_text(cn.most_recent_sql_handle) est
LEFT OUTER JOIN sys.dm_exec_requests er
 ON st.session_id = er.session_id
 AND er.session_id IS NULL

Four DMVs and one DMF are involved in finding idle sessions that have open transac-
tions; a brief description of each is given in table 8.7.

Listing 8.11 How to find an idle session with an open transaction

Table 8.7 DMVs/DMF used to find idle sessions with open transactions

DMV/DMF Description

sys.dm_exec_sessions Contains details of sessions on SQL Server

sys.dm_tran_session_transactions Returns correlation information for transactions/sessions

Identify idle
sessions
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 8 Resolving transaction issues
The joining of the DMVs and the DMF provides you with enough information to iden-
tify any idle sessions that have open transactions, across all the databases on the server.
The DMVs sys.dm_exec_sessions, sys.dm_tran_session_transactions, and sys.dm_exec_
connections are joined on their common key column session_id. The connection
contains the column most_recent_sql_handle, which is passed to the DMF sys.dm_
exec_sql_text to retrieve the text of the SQL query. A LEFT OUTER JOIN is then per-
formed on the DMV sys.dm_exec_requests. Any requests with a NULL session_id are
identified as sessions with idle transactions.

 An example of the type of output for this query is shown in figure 8.5.

The output shows that there are two idle sessions (with session ids of 51 and 54)
with open transactions. For each transaction, you can see the login name of the
user who owns the transaction, the machine the query is running from (host_name),
the SQL query that contains the open transaction, the time of the last read and write
to the database, and the name of the program that’s running the query. This infor-
mation should be enough to identify who has the open transaction, where it’s run-
ning from, what SQL is causing the problem, and how long it’s been since there was
any activity.

 Having identified which idle sessions have open transactions, our next logical step
would be to ask what’s being blocked by these open transactions.

8.10 Waiting due to transaction locks
SQL queries can wait for many reasons; all result in a perceived decrease in per-
formance. Identifying these queries and transactions will allow you to investigate
how different queries and transactions interact and whether their performance can
be improved. The following scripts will examine what’s waiting (being blocked) by
transactions that have idle sessions, non-idle sessions, and both idle and non-
idle sessions.

sys.dm_exec_connections Contains details of connections to SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle

sys.dm_exec_requests Contains details of requests executing on SQL Server

Table 8.7 DMVs/DMF used to find idle sessions with open transactions (continued)

DMV/DMF Description

Figure 8.5 Output showing idle sessions with open transactions
www.it-ebooks.info

http://www.it-ebooks.info/

215Waiting due to transaction locks
8.10.1 Waiting because of an idle session with an open transaction

We can enhance the script presented in the previous section to obtain details of which
queries are being blocked by open transactions. This could be useful in informing
these users that their queries are being processed slowly. Similarly, we could inform
the perpetrator that their query is preventing other users from doing work. Note that
this still applies to idle sessions with open transactions.

 The script we use to find what queries are being blocked by idle sessions with open
transactions is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 Waits.wait_duration_ms / 1000 AS WaitInSeconds
 , Blocking.session_id as BlockingSessionId
 , DB_NAME(Blocked.database_id) AS DatabaseName
 , Sess.login_name AS BlockingUser
 , Sess.host_name AS BlockingLocation
 , BlockingSQL.text AS BlockingSQL
 , Blocked.session_id AS BlockedSessionId
 , BlockedSess.login_name AS BlockedUser
 , BlockedSess.host_name AS BlockedLocation
 , BlockedSQL.text AS BlockedSQL
 , SUBSTRING (BlockedSQL.text, (BlockedReq.statement_start_offset/2) + 1,
 ((CASE WHEN BlockedReq.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), BlockedSQL.text)) * 2
 ELSE BlockedReq.statement_end_offset
 END - BlockedReq.statement_start_offset)/2) + 1)
 AS [Blocked Individual Query]
 , Waits.wait_type
FROM sys.dm_exec_connections AS Blocking
INNER JOIN sys.dm_exec_requests AS Blocked
 ON Blocking.session_id = Blocked.blocking_session_id
INNER JOIN sys.dm_exec_sessions Sess
 ON Blocking.session_id = sess.session_id
INNER JOIN sys.dm_tran_session_transactions st
 ON Blocking.session_id = st.session_id
LEFT OUTER JOIN sys.dm_exec_requests er
 ON st.session_id = er.session_id
 AND er.session_id IS NULL
INNER JOIN sys.dm_os_waiting_tasks AS Waits
 ON Blocked.session_id = Waits.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocking.most_recent_sql_handle)
 AS BlockingSQL
INNER JOIN sys.dm_exec_requests AS BlockedReq
 ON Waits.session_id = BlockedReq.session_id
INNER JOIN sys.dm_exec_sessions AS BlockedSess
 ON Waits.session_id = BlockedSess.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocked.sql_handle) AS BlockedSQL
ORDER BY WaitInSeconds

Listing 8.12 What’s being blocked by idle sessions with open transactions

Blocker
joins

Blocked
joins
www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 8 Resolving transaction issues
In the listing, five DMVs and one DMF are involved in finding idle sessions that have
open transactions. A brief description of each is given in table 8.8.

The joining of the DMVs and the DMF provides you with enough information to
identify what’s being blocked by idle sessions that have open transactions, across all
the databases on the server. The DMVs sys.dm_exec_sessions, sys.dm_tran_session_
transactions, and sys.dm_exec_connections are joined on their common key column
session_id. The connection contains the column most_recent_sql_handle, which is
passed to the DMF sys.dm_exec_sql_text to retrieve the text of the SQL query. A LEFT
OUTER JOIN is then performed on the DMV sys.dm_exec_requests. Any requests with
a NULL session_id are identified as sessions with idle transactions. An INNER JOIN on
both sys.dm_exec_requests and sys.dm_exec_sessions for the waiting query, using the
DMV sys.dm_os_waiting_tasks, allows you to obtain details of the waiting query.

 Note that because transactions can go across batches of SQL (for example, a .NET
client may begin a transaction and then call two or more batches or stored proce-
dures), you might not be able to discern the cause of the blocking from the queries
shown. But inspecting the call stack should give you some insight into when the trans-
action started.

 An example of the type of output for this query is shown in figure 8.6.
 In the output, you can see details of the SQL queries, the users, and the loca-

tion where the queries are running from, for both the blocking and the blocked
queries. This is useful in determining who/what/where the blocking process is and
who it’s affecting.

Table 8.8 DMVs/DMF used to find idle sessions with open transactions

DMV/DMF Description

sys.dm_exec_sessions Contains details of sessions on SQL Server

sys.dm_tran_session_transactions Returns correlation information for transactions/sessions

sys.dm_exec_connections Contains details of connections to SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle

sys.dm_exec_requests Contains details of requests executing on SQL Server

sys.dm_os_waiting_tasks Contains details of wait queues of tasks that are waiting on a
resource

Figure 8.6 Output showing what’s waiting because of idle sessions with open transactions
www.it-ebooks.info

http://www.it-ebooks.info/

217Waiting due to transaction locks
If the blocked user is running a SELECT query, it may be possible to bypass the waiting
by preceding the SELECT statement with SET TRANSACTION ISOLATION LEVEL READ
UNCOMMITTED. This typically won’t take out locks or honor any locks.

8.10.2 Waiting because of active session transactions only

Although it can be useful to identify what’s being blocked by idle sessions with open
transactions, this is a relatively rare situation. A more common situation occurs when
queries are being blocked by other queries in a transaction.

 The script we use to find what queries are being blocked by active sessions with
open transactions is shown in the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 Waits.wait_duration_ms / 1000 AS WaitInSeconds
 , Blocking.session_id as BlockingSessionId
 , DB_NAME(Blocked.database_id) AS DatabaseName
 , Sess.login_name AS BlockingUser
 , Sess.host_name AS BlockingLocation
 , BlockingSQL.text AS BlockingSQL
 , Blocked.session_id AS BlockedSessionId
 , BlockedSess.login_name AS BlockedUser
 , BlockedSess.host_name AS BlockedLocation
 , BlockedSQL.text AS BlockedSQL
 , SUBSTRING (BlockedSQL.text, (BlockedReq.statement_start_offset/2) + 1,
 ((CASE WHEN BlockedReq.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), BlockedSQL.text)) * 2
 ELSE BlockedReq.statement_end_offset
 END - BlockedReq.statement_start_offset)/2) + 1)
 AS [Blocked Individual Query]
 , Waits.wait_type
FROM sys.dm_exec_connections AS Blocking
INNER JOIN sys.dm_exec_requests AS Blocked
 ON Blocking.session_id = Blocked.blocking_session_id
INNER JOIN sys.dm_exec_sessions Sess
 ON Blocking.session_id = sess.session_id
INNER JOIN sys.dm_tran_session_transactions st
 ON Blocking.session_id = st.session_id
INNER JOIN sys.dm_exec_requests er
 ON st.session_id = er.session_id
INNER JOIN sys.dm_os_waiting_tasks AS Waits
 ON Blocked.session_id = Waits.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocking.most_recent_sql_handle)
 AS BlockingSQL
INNER JOIN sys.dm_exec_requests AS BlockedReq
 ON Waits.session_id = BlockedReq.session_id
INNER JOIN sys.dm_exec_sessions AS BlockedSess
 ON Waits.session_id = BlockedSess.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocked.sql_handle) AS BlockedSQL
ORDER BY WaitInSeconds

Listing 8.13 What’s blocked by active sessions with open transactions

Blocker
joins

Blocked
joins
www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 8 Resolving transaction issues
The DMVs/DMFs and joins involved in this script are largely the same as those in the
previous script. Please see that script for greater detail. Where the current script does
differ is that the LEFT OUTER JOIN is replaced with an INNER JOIN, and NULL
session_ids are filtered out, resulting in including transactions with active sessions only.

 Again, knowing the SQL queries involved should be the starting point of examin-
ing and resolving any conflicts.

8.10.3 Waiting because of both active and idle session transactions

Concentrating individually on idle sessions and active sessions can provide useful
information for subsequent analysis. But sometimes a combined approach might pro-
vide more insight into any blocking problems.

 The script we use to find which queries are being blocked by both active and idle
sessions with open transactions is given here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 Waits.wait_duration_ms / 1000 AS WaitInSeconds
 , Blocking.session_id as BlockingSessionId
 , DB_NAME(Blocked.database_id) AS DatabaseName
 , Sess.login_name AS BlockingUser
 , Sess.host_name AS BlockingLocation
 , BlockingSQL.text AS BlockingSQL
 , Blocked.session_id AS BlockedSessionId
 , BlockedSess.login_name AS BlockedUser
 , BlockedSess.host_name AS BlockedLocation
 , BlockedSQL.text AS BlockedSQL
 , SUBSTRING (BlockedSQL.text, (BlockedReq.statement_start_offset/2) + 1,
 ((CASE WHEN BlockedReq.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), BlockedSQL.text)) * 2
 ELSE BlockedReq.statement_end_offset
 END - BlockedReq.statement_start_offset)/2) + 1)
 AS [Blocked Individual Query]
 , Waits.wait_type
FROM sys.dm_exec_connections AS Blocking
INNER JOIN sys.dm_exec_requests AS Blocked
 ON Blocking.session_id = Blocked.blocking_session_id
INNER JOIN sys.dm_exec_sessions Sess
 ON Blocking.session_id = sess.session_id
INNER JOIN sys.dm_tran_session_transactions st
 ON Blocking.session_id = st.session_id
LEFT OUTER JOIN sys.dm_exec_requests er
 ON st.session_id = er.session_id
INNER JOIN sys.dm_os_waiting_tasks AS Waits
 ON Blocked.session_id = Waits.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocking.most_recent_sql_handle)
 AS BlockingSQL
INNER JOIN sys.dm_exec_requests AS BlockedReq
 ON Waits.session_id = BlockedReq.session_id

Listing 8.14 What’s blocked—active and idle sessions with open transactions

Blocker
joins

Blocked
joins
www.it-ebooks.info

http://www.it-ebooks.info/

219Queries waiting for more than 30 seconds
INNER JOIN sys.dm_exec_sessions AS BlockedSess
 ON Waits.session_id = BlockedSess.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocked.sql_handle) AS BlockedSQL
ORDER BY WaitInSeconds

The DMVs/DMFs and joins involved in this script are largely the same as in the previ-
ous script, relating to waiting because of idle sessions with open transactions. Please
see that script for greater detail. This script differs in that the filter based on AND
er.session_id IS NULL has been removed, resulting in the inclusion of transactions
with both active and idle sessions.

 Again, knowing the SQL queries involved should be the starting point of examin-
ing and resolving any conflicts.

8.11 Queries waiting for more than 30 seconds
Queries that are blocked for a short time are probably of little concern, because this
tends to be the normal pattern of usage with SQL Server. Perhaps of more concern are
the queries that have been waiting for a longer time. Investigating them will allow you
to determine why they’re waiting and the cause of the blocking and will also provide
you with clues as to how to reduce the waiting and increase throughput.

 The script we use to find which queries are being blocked for more than 30 sec-
onds by idle sessions with open transactions is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 Waits.wait_duration_ms / 1000 AS WaitInSeconds
 , Blocking.session_id as BlockingSessionId
 , Sess.login_name AS BlockingUser
 , Sess.host_name AS BlockingLocation
 , BlockingSQL.text AS BlockingSQL
 , Blocked.session_id AS BlockedSessionId
 , BlockedSess.login_name AS BlockedUser
 , BlockedSess.host_name AS BlockedLocation
 , BlockedSQL.text AS BlockedSQL
 , DB_NAME(Blocked.database_id) AS DatabaseName
FROM sys.dm_exec_connections AS Blocking
INNER JOIN sys.dm_exec_requests AS Blocked
 ON Blocking.session_id = Blocked.blocking_session_id
INNER JOIN sys.dm_exec_sessions Sess
 ON Blocking.session_id = sess.session_id
INNER JOIN sys.dm_tran_session_transactions st
 ON Blocking.session_id = st.session_id
LEFT OUTER JOIN sys.dm_exec_requests er
 ON st.session_id = er.session_id
 AND er.session_id IS NULL
INNER JOIN sys.dm_os_waiting_tasks AS Waits
 ON Blocked.session_id = Waits.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocking.most_recent_sql_handle)
 AS BlockingSQL

Listing 8.15 What has been blocked for more than 30 seconds

Blocker
joins
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 8 Resolving transaction issues
INNER JOIN sys.dm_exec_requests AS BlockedReq
 ON Waits.session_id = BlockedReq.session_id
INNER JOIN sys.dm_exec_sessions AS BlockedSess
 ON Waits.session_id = BlockedSess.session_id
CROSS APPLY sys.dm_exec_sql_text(Blocked.sql_handle) AS BlockedSQL
WHERE Waits.wait_duration_ms > 30000
ORDER BY WaitInSeconds

This script is essentially the same as the previous one, in that it determines what’s
being blocked by open transactions, with an additional filter based on the waiting for
a given time interval. Please see the previous script for more detail of the DMVs/DMFs
and joins involved.

 The script determines which queries have been blocked, for an interval of 30 sec-
onds or more, by any open transactions. The results are sorted by the time spent wait-
ing. It’s possible to amend this time interval to include or exclude shorter or longer
periods of waiting.

 Having identified the query causing the most waiting, together with the queries
being blocked, you can examine the SQL query to determine why the blocking is
occurring. It’s also possible to use the scripts in chapter 4 to obtain the cached
plans for the queries; this again should help illustrate why blocking is occurring.
Later, at the end of this chapter, I’ll provide some tips on how blocking/waiting
can be reduced.

 Depending on what you’re looking for (for example, open transactions with idle
sessions), you could incorporate each of the scripts given in this section into the
generic monitor job given in chapter 1.

 Figure 8.7 shows an example of the type of output for this query.

Having looked at various scripts pertaining to transactions and blocking, we’ll next
take a brief look at lock escalation and how it influences the range of locks within the
database structure hierarchy.

8.12 Lock escalation
Locks are taken on data to ensure consistency of data. As the amount of data involved
in a transaction increases, so does the number of locks. Because locks take up
resources and require coordination, when the number of locks increases above a cer-
tain threshold (typically 5,000 objects), SQL Server will often escalate the low-level
locks (for example, on rows) to fewer locks on higher-level objects (for example, page
or table locks).

 Locking higher-level objects typically provides greater performance for the run-
ning query but reduced concurrency for other queries that would like to run. You

Blocked
joins

Figure 8.7 Output showing what’s waiting for more than 30 seconds
www.it-ebooks.info

http://www.it-ebooks.info/

221How to reduce blocking
might argue that SQL Server isn’t always correct in escalating the low-level locks to
high-level locks because it can significantly reduce concurrency.

 Lock escalation can be responsible for increased occurrence of blocking and dead-
locks. With this in mind, it may be desirable to reduce the occurrence of lock escala-
tion. Details on how to do this follow.

 In SQL Server 2008 it’s possible to prevent this automatic lock escalation on a table-
by-table basis. The syntax is as follows:

ALTER TABLE SchemaName.TableName SET (LOCK_ESCALATION = DISABLE)

It’s also possible to prevent lock escalation in SQL Server 2005, using more tortuous
methods. Two such methods follow; either of these scripts could be added as a startup
stored procedure:

BEGIN TRAN
SELECT *
FROM dbo.tblCountry WITH (UPDLOCK, HOLDLOCK)
WHERE 1=2

or

BEGIN TRAN
DELETE FROM dbo.tblCountry
WHERE 1=2

It’s also possible to set trace flag 1211 to disable lock escalation for all tables or set
trace flag 1224 to disable lock escalation only when there are memory pressures.

 Remember that automatic lock escalation exists for a reason—that reason being to
optimize the use and coordination of resources that locks acquire—so you should
change the default implementation only after due consideration and testing.

8.13 How to reduce blocking
Blocking in SQL Server is normal and to be expected. But excessive blocking, with its
resultant decrease in performance, scalability, and concurrency, is not. In essence, you
should aim to run SQL queries with the minimum of blocking but still maintain the
integrity and consistency of the underlying data.

 With this in mind, I’ll provide a number of methods that you can use to reduce the
amount of blocking. As in much of life, there are conflicting interests that need to be
balanced. For example, adding columns as an INCLUDE to an index may be great for a
given SELECT query but may increase the time taken for INSERTs (and thus extend the
interval locks/transactions are held).

 Look at the many scripts given in this book, over the many different areas; most of
them aim to improve the performance of your database, which in itself should help
reduce the amount of blocking.

 A brief description of some of the methods that can be used to reduce blocking is
given in table 8.9.
www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 8 Resolving transaction issues
Table 8.9 Methods to reduce blocking

Method Description

Process the
required rows
quickly.

To process the required rows quickly, you’ll often need to implement indexes.
Remember that indexes are great for quickly selecting data but often have
an overhead when modifying data (DELETE, INSERT/UPDATE). That said,
modification queries often have a WHERE clause, so they may use an index
themselves.

The clustered index should be used for the most important range-based queries,
where you want most of the row’s data and in the order specified by the index.
For example, if the most important query is the production of month-end
invoices, you might consider a clustered index on the invoice date.

Checking the output from the various scripts in chapter 3 will allow you to deter-
mine whether you should consider implementing any missing indexes.

Because indexes can be detrimental to the performance of modification queries,
you can use the scripts in chapter 3 to identify, and possibly remove, indexes
that aren’t used or have a high maintenance cost.

If you know which indexes are being used (from the cached plan or from the
script in chapter 3, section 3.7), you can ensure that they are optimal. Again,
you can use the scripts in chapter 3 to ensure that the index’s statistics are up
to date with an optimal sample size, that fragmentation is minimal, and that the
fill factor has an appropriate setting (full for relatively static data but having
space if there are updates).

You can check the cached plans to ensure the number of key lookups is minimal
(or perhaps INCLUDE the lookup column as part of the index). You should exam-
ine table scans and index scans to determine if they’re appropriate.

Where possible, you should place tempdb and any important indexes on different
disks, each with its own disk controller; this should help improve query perfor-
mance. You might also want to place tables that are commonly joined together
on their own separate disks.

Databases typically hold data for a large time period, often many months or
years. Because you’re often interested in only the last few days or months of
data, it makes sense (if you have SQL Server 2008 or higher) to take advantage
of filtered indexes and their associated filtered statistics. It may be possible to
produce a version of the database that reflects only a few days’ or months’ worth
of data.

Again, if you have SQL Server 2008 or higher, you might want to use compres-
sion. Compression allows more data to be held on a page. There’s a cost to
uncompressing the data, but typically this is compensated for by the improved
I/O (most database systems I’ve seen tend to be limited by I/O and not CPU).
Typically, compression has the biggest impact on queries that extract data
based on a range.

It’s also possible to partition large tables; this in essence splits the table
horizontally, typically by month. Any locks are typically restricted to a given
partition rather than the whole table, leading to reduced locking and better
concurrency.
www.it-ebooks.info

http://www.it-ebooks.info/

223How to reduce blocking
Process only the
data you need.

The smaller the number of rows you need to select or modify, the smaller the num-
ber of locks held. Supplying a WHERE clause to your queries will help with this.
Processing only the columns you require will also reduce the size of the dataset.
Too often additional columns are retrieved in the hope they might be useful. If you
need to process a large number of rows, you could consider breaking up the rows
into smaller processing units. For example, if you need to update many accounts,
you might want to execute them in units that are split by the first letter of the
account name or by account numbers within a certain range.

Schedule the job
when nothing
else is running.

There may be times when your system is processing little data. It may be possi-
ble to reschedule some jobs to run when nothing else is happening in the sys-
tem, thus reducing the opportunity for blocking.

Take advantage
of asynchronous
processing.

If the updates aren’t immediately required, it may be possible to use asynchro-
nous processing to limit the number of blocks. For example, you could use Ser-
vice Broker to store intermediate results until they’re ready to be processed
further. This has the additional benefit of control over the order of resource
usage, which can be beneficial in reducing both blocking and deadlocks.

Use a lower
isolation level.

Often SELECTs can be blocked by modification queries (and the reverse). If
the data being queried is sufficiently distinct from the data being modified,
setting the transaction isolation level of a batch of SELECT queries to READ
UNCOMMITTED will ignore any locks, and the amount of blocking will be
reduced. It’s possible to produce a similar effect by using the NOLOCK hint on
the tables in the SELECT statements.

Regarding the distinctness of the modification and select queries, often in a
business the people who run SELECTs on the data are aware of and responsible
for any updates on their underlying data. Knowing this should give credence to
this solution.

Set the
LOCK_TIMEOUT
value.

It’s possible to limit the amount of time a query waits for a lock to be released
(that is, the time it spends waiting) by setting the LOCK_TIMEOUT property within
a batch of SQL. For example, the following code ensures the SELECT statement
will wait 5 seconds (5000 milliseconds) for any locks to be released. If the locks
are still present after 5 seconds, an error (error number 1222) is raised.

SET LOCK_TIMEOUT 5000
SELECT * FROM [dbo].[tblCountry]

It’s possible to handle this error in your SQL code, in a manner similar to how
deadlocks can be handled (for example, wait a given period and retry the query a
given number of times, in the hope that the locking will pass). To return
LOCK_TIMEOUT to its default setting (wait forever) set it to -1.

Set the TIMEOUT
value on clients.

For certain clients, for example, .NET web applications, it’s possible to specify
how long a query is allowed to run before it should time out. Any timed-out que-
ries can be resubmitted using the same pattern as for deadlock retries given ear-
lier. This can be used to reduce the amount of blocking and prevent runaway
queries on SQL Server.

Table 8.9 Methods to reduce blocking (continued)

Method Description
www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 8 Resolving transaction issues
8.14 How to reduce deadlocks
Many of the suggestions given to reduce blocking apply equally to reducing deadlocks,
which result from circular blocking. If you can reduce the time it takes to process data,
then locks are held less, and the incidence of blocking and deadlocks should be reduced.

 Sometimes deadlocks occur when two queries start to escalate their locks; again it
may be possible to prevent or reduce this lock escalation (see the previous section). A
brief description of some of the methods that can be used to reduce deadlocks is
given in table 8.10.

Table 8.10 Methods to reduce deadlocks

Method Description

Process resources in
the same order.

If different routines access resources (for example, tables) in the same
order, they’ll typically acquire and release locks in the same order. This
should help prevent the primary cause of deadlocks, where each routine
holds the resource the other routine requires.

Automatically retry
after getting a
deadlock.

A script presented in an earlier deadlock section provides template code
for handling deadlocks. In essence, when a deadlock occurs, the client
can wait awhile (hoping that the other query will finish or free up its locks)
and then retry a given number of times.

Hold an update lock on
relevant SELECTs.

As stated earlier, deadlocks occur because two queries each hold a
resource and then want the resource that the other query owns. If you
apply an UPDATE lock hint to the SELECT statement, this will ensure that
any other query will wait for the associated update to finish before obtain-
ing the data, reducing the incidence of deadlocks.

An example of this is shown in the following script:

BEGIN TRAN

DECLARE @key INT

SELECT @key = KeyId
FROM dbo.SomeTable
WHERE SomeField = 99

IF @key IS NOT NULL
BEGIN
 UPDATE dbo.SomeTable
 SET SomeOtherField = 1
END

COMMIT

In the script, some information (KeyId) is obtained from the table named
dbo.SomeTable. This information is used subsequently to decide whether
to update the table. There could be another query running similar code
(but it selects the record that’s currently requires updating and wants to
update the record that has currently been selected); this would result in a
deadlock. Adding an update lock hint to the SELECT will ensure the lock
on the SELECT is held until the record is committed or rolled back. The
SELECT statement needs to change to the following:

SELECT @key = KeyId
FROM dbo.SomeTable WITH (UPDLOCK)
WHERE SomeField = 99
www.it-ebooks.info

http://www.it-ebooks.info/

225Summary
8.15 Summary
Congratulations on making it to the end of the chapter! I hope you now have a better
understanding of locks, blocks, deadlocks, and transactions. Although the small case
study provided was quite simple, hopefully it allowed adequate discussion of the
underlying concepts provided by the scripts.

 I provided several template scripts, for example, deadlock handling, as a base for
your own developments. The core scripts will allow you to investigate blocking, identi-
fying the SQL queries involved, the blocked resources, and the id of the user/machine
causing the blocking.

 We discussed various methods of reducing both blocking and deadlocking. Follow-
ing these guidelines should lead to queries that have better performance, greater con-
currency, and less blocking.

 Next we’ll look at the varied group of database-related DMVs. We’ll look at topics
including memory problems and indexes with hotspots, with a view to investigating
and fixing problems they highlight.

Add another index. Microsoft support has estimated that 50% of deadlocks that occur in pro-
duction systems can be eliminated by applying an appropriate index. The
premise is that getting data from the index instead of the underlying table
obviates locking.

Looking at the deadlock information given in the SQL Server error log
should identify the SQL queries involved in the deadlocks. Examining the
SQL code along with its cached plans should help identify the area of con-
flict and its potential solution.

Keep transactions
short.

Keeping processing times short helps ensure that there’s less opportunity
for blocking or deadlocks. It may be possible to offload some of the
query’s work to asynchronous processing. Service Broker can be an ideal
tool for this. Candidates for asynchronous processing include email confir-
mation and job completion confirmation.

Table 8.10 Methods to reduce deadlocks (continued)

Method Description
www.it-ebooks.info

http://www.it-ebooks.info/

Database-level DMVs
This chapter covers a miscellany of functionality that collectively belongs to the
database DMVs. We’ll examine and discuss the importance of tempdb, how its
space is used by different objects, how much space is used by individual ses-
sions and running tasks, and why it’s important to monitor. If tempdb has prob-
lems, it can affect all the databases on SQL Server. Typically tempdb problems
are reported in the SQL Server error log. We’ll examine how to check tempdb
for potential problems and how to fix them, as we’ll look at a list of tempdb
best practices.

 We’ll investigate various aspects of index contention and explore solutions. Top-
ics include indexes under locking pressure, lock escalations, indexes with page
splits, and metrics about how tables and indexes are specifically used. All these
scripts will provide opportunities to identify problem areas and optimize the per-
formance of your tables and indexes.

This chapter covers
■ Using tempdb to identify and fix space

problems
■ Index operations to identify and improve SQL

query performance
226

www.it-ebooks.info

http://www.it-ebooks.info/

227Space usage in tempdb
 First, let’s look at why tempdb is such an important database, what it’s used for, and
how it’s used.

9.1 Space usage in tempdb
Here we’ll examine and discuss the importance of tempdb, see how to determine the
amount of total and free space it has, and drill down into the amount of space used by
the different types of objects it contains.

 Tempdb is a shared resource. All the databases on a given SQL Server instance
share tempdb. It typically has more activity and transactions than all the other data-
bases put together. If tempdb has problems, it can impact all the other databases on
the server, thus highlighting the importance of keeping tempdb problem free.

 When you query the DMVs that relate to tempdb space usages, they report values
based on the number of pages of data. Each page represents 8 KB of data, so if you
multiply the page count values by 8.0, you get the amount of data as kilobytes. Alterna-
tively, you can multiply the page count by 8.0 and then divide by 1024 to get the
amount of data as megabytes (MB). Where possible, I’ll convert the metrics to this
more familiar unit.

9.1.1 What is tempdb?

Tempdb is a database. There’s only one per SQL Server instance, and it’s used by all
the other databases on the server. When SQL queries running on your databases
need to work with transient data, for example, sorting data, this takes place in
tempdb. SQL Server itself also makes extensive use of tempdb. Tempdb holds tempo-
rary data, and when the server is restarted, tempdb is rebuilt using a definition from
the model database.

 Tempdb holds information relating to user objects, internal objects, and version
store data. A list of some of the more common objects associated with each type is
shown in table 9.1.

Table 9.1 Objects in tempdb

DMV/Object Description

User objects Local temporary tables and indexes

Global temporary tables and indexes

Table variables

User-defined tables and indexes

Internal objects Sort results

Hash joins

XML variables

Work tables for cursors
www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 9 Database-level DMVs
When a server experiences problems, tempdb is a typical area to check. Checking its
free space will either eliminate it from your concerns or require you to investigate fur-
ther, perhaps drilling down on the individual sessions and tasks using it. You can
determine how much space tempdb has free by using the DMV sys.dm_db_space_
usage. We’ll investigate this next.

9.1.2 Total, free, and used space in tempdb

As part of the normal housekeeping tasks, it makes sense to regularly check tempdb
for space usage. Recording this over a period of time will allow you to plan for future
space usage before it becomes an urgent problem that needs to be fixed.

 The script I use to find the amount of space (total, used, and free) in tempdb is
shown in this listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT SUM(user_object_reserved_page_count
 + internal_object_reserved_page_count
 + version_store_reserved_page_count
 + mixed_extent_page_count
 + unallocated_extent_page_count) * (8.0/1024.0)
 AS [TotalSizeOfTempDB(MB)]
 , SUM(user_object_reserved_page_count
 + internal_object_reserved_page_count
 + version_store_reserved_page_count
 + mixed_extent_page_count) * (8.0/1024.0)
 AS [UsedSpace (MB)]
 , SUM(unallocated_extent_page_count * (8.0/1024.0))
AS [FreeSpace (MB)]
FROM sys.dm_db_file_space_usage

The script calculates the total size of the tempdb database space by summing the value
of the following columns, across all the files that make up tempdb:

Temporary large object (LOB) storage

Spool operations that store intermediate results

Version store objects Snapshot isolation

Triggers

Multiple active result sets (MARS)

Online index build

Listing 9.1 Amount of space (total, used, and free) in tempdb

Table 9.1 Objects in tempdb (continued)

DMV/Object Description
www.it-ebooks.info

http://www.it-ebooks.info/

229Space usage in tempdb
■ user_object_reserved_page_count
■ internal_object_reserved_page_count
■ version_store_reserved_page_count
■ mixed_extent_page_count
■ unallocated_extent_page_count

The amount of used space is calculated by summing the value of the following col-
umns, across all the files that make up tempdb:

■ user_object_reserved_page_count
■ internal_object_reserved_page_count
■ version_store_reserved_page_count
■ mixed_extent_page_count

Finally, the amount of free space is calculated by summing the value of the column
unallocated_extent_page_count, across all the files that make up tempdb.

 In all cases, because the column values relate to the number of database pages, I’ve
multiplied the value by 8 (one page is 8 KB in size) and divided the result by 1024 to
calculate the sizes as megabytes. Mixed extents are pages that contain a mixture of dif-
ferent object types.

 An example of the type of output for this query is shown in figure 9.1.
 The output in this example shows that the total size of tempdb is about 98 giga-

bytes (100857.5/1024), of which about 1 gigabyte is currently being used, and
97 gigabytes are unused.

 Monitoring this output over time will allow you to determine the pattern of
tempdb usage, perhaps identifying periods when it’s nearing its size limit. In this case,
it makes sense to preempt the file growth and expand tempdb before an increase is
needed. I’ve experienced several occasions where the client code (for example, a
.NET client) has terminated with a timeout error because the database has been busy
growing its files.

 You could use the metrics relating to the amount of free space to determine at run-
time if a routine that uses a lot of tempdb space should be run now or be rescheduled
to run when more space is available.

 It’s also possible to obtain details of the size of all the files that make up the data-
base, not just tempdb, by querying the sys.dm_os_performance_counters DMV. The
output includes the total size of the data file, the log file, and the amount of the log
file that has been used.

 The script we use to find the total amount of space (data, log, and log used) in
each of the databases on the server is shown in the following listing.

Figure 9.1
Output showing space (total, used,
and free) in tempdb
www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 9 Database-level DMVs
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT instance_name
, counter_name
, cntr_value / 1024.0 AS [Size(MB)]
FROM sys.dm_os_performance_counters
WHERE object_name = 'SQLServer:Databases'
AND counter_name IN (
'Data File(s) Size (KB)'
, 'Log File(s) Size (KB)'
, 'Log File(s) Used Size (KB)')
ORDER BY instance_name, counter_name

This script queries the sys.dm_os_
performance_counters DMV for infor-
mation relating to database file sizes. It
does this by selecting counters where
the object name is equal to ‘SQLServer:
Databases’ and the counter name is one
of the following: ‘Data File(s) Size (KB)’,
‘Log File(s) Size (KB)’, or ‘Log File(s)
Used Size (KB)’. The output is sorted
by database name (instance_name) and
counter_name (type of data file).

 Sample output for this query is shown
in figure 9.2.

 Although it’s interesting to know how
much total space is used or free, you can
get more detailed information about
both by drilling further into the sys.dm_
db_space_usage DMV. We’ll discuss this next.

9.1.3 Tempdb total space usage by object type

In the previous section you saw that tempdb can contain various types of objects,
namely, user-defined, internal, and version store objects. Examining the amount of
space used by each area (and how it changes over a given time interval) can be useful
in preempting and highlighting the cause of space problems.

 The script we use to find the total amount of tempdb space used by object type is
shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 SUM (user_object_reserved_page_count) * (8.0/1024.0)
 AS [User Objects (MB)],

Listing 9.2 Total amount of space (data, log, and log used) by database

Listing 9.3 Tempdb total space usage by object type

Figure 9.2 Output showing space usage (data
and log) by database
www.it-ebooks.info

http://www.it-ebooks.info/

231Session usage in tempdb
 SUM (internal_object_reserved_page_count) * (8.0/1024.0)
 AS [Internal Objects (MB)],
 SUM (version_store_reserved_page_count) * (8.0/1024.0)
 AS [Version Store (MB)],
 SUM (mixed_extent_page_count)* (8.0/1024.0)
 AS [Mixed Extent (MB)],
 SUM (unallocated_extent_page_count)* (8.0/1024.0)
 AS [Unallocated (MB)]
FROM sys.dm_db_file_space_usage

This script queries the sys.dm_db_file_space_usage DMV, summing up for each of
the tempdb files the total space used by user objects, internal objects, and version
store objects.

 Again, monitoring this output over time will allow you to determine the pattern of
usage, as determined by the various component areas of the tempdb database. If too
much space is being used, it may be possible to reschedule some SQL queries to run at
another time, when the server is less busy.

 An example of the type of output for this query is shown in figure 9.3.

The output shows that 743 MB of tempdb is used by user objects, 180 MB by internal
objects, 1 MB by version store, and 39 MB by mixed extents.

 Now we’ve identified the types of object and the space they’re consuming, it
would be worthwhile to drill down on the sessions that have used this space. This would
allow us to identify specific sessions (users/connections) that might be causing space
usage problems.

9.2 Session usage in tempdb
In addition to looking at how much space is used by each of the object types within
tempdb, you can also see how much space each session has used. This can be useful
for identifying the job or person that’s using most of tempdb or is displaying a pattern
of usage that could be causing space problems now or in the future.

 Here we’ll look at how much tempdb space is used by sessions and how much of it
has been released back to SQL Server to be reused. Sessions that make excessive use of
tempdb space can lead to problems with other sessions that use tempdb and might
necessitate the rescheduling of certain SQL queries.

 The core DMV used is sys.dm_db_session_space_usage. This contains, for each ses-
sion, details of the number of pages allocated (and de-allocated) for both user objects
and internal objects, for completed batches of SQL queries.

Figure 9.3 Output showing tempdb space usage by object type
www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 9 Database-level DMVs
9.2.1 Session usage of tempdb space

This script shows you how much space each session has used in tempdb. It shows both
allocated page counts and de-allocated (reclaimed) page counts, for a batch of SQL
queries that have completed. Ideally, any allocated storage would be reclaimed rela-
tively quickly. If this is not being done, it perhaps indicates some coordination prob-
lems within SQL Server itself.

 The script used to find the space usage by session is shown in the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT es.session_id
 , ec.connection_id
 , es.login_name
 , es.host_name
 , st.text
 , su.user_objects_alloc_page_count
 , su.user_objects_dealloc_page_count
 , su.internal_objects_alloc_page_count
 , su.internal_objects_dealloc_page_count
 , ec.last_read
 , ec.last_write
 , es.program_name
FROM sys.dm_db_session_space_usage su
INNER JOIN sys.dm_exec_sessions es
 ON su.session_id = es.session_id
LEFT OUTER JOIN sys.dm_exec_connections ec
 ON su.session_id = ec.most_recent_session_id
OUTER APPLY sys.dm_exec_sql_text(ec.most_recent_sql_handle) st
WHERE su.session_id > 50

You can see that three DMVs and one DMF are involved in finding the space used by
sessions of completed batches. A brief description of each is given shown in table 9.2.

The joining of the DMVs and the DMF provides us with enough information to identify
the tempdb space used by each session, for completed batches, across all the data-
bases on the server. The DMVs sys.dm_db_session_space_usage, sys.dm_exec_sessions,

Listing 9.4 Space usage by session

Table 9.2 DMVs/DMF that show the tempdb space used by sessions for completed batches

DMV/DMF Description

sys.dm_db_session_space_usage Contains details of space used by user and internal objects for
each session

sys.dm_exec_sessions Contains details of sessions on SQL Server

sys.dm_exec_connections Contains details of connections to SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan_handle
www.it-ebooks.info

http://www.it-ebooks.info/

233Session usage in tempdb
and sys.dm_exec_connections are joined on their common key column session_id.
The connection contains the column most_recent_sql_handle, which is passed to the
DMF sys.dm_exec_sql_text to retrieve the text of the SQL query. A LEFT OUTER JOIN is
used to join sys.dm_exec_sessions and sys.dm_exec_connections because a session can
have multiple connections. We filter out any system sessions that have a session_id of
50 or less. An example of the type of output for this query is shown in figure 9.4.

 The output shows the relevant space columns together with details of the session
and connection that allow you to report on where the query is running from (host_
name), who is running the SQL query (login_name), together with the text of the last-
completed SQL query. If space usage is a problem (as reported in the SQL Server error
log), you can use this output to determine which session/user/SQL query is consuming
the most space and how that space is composed (user object or internal objects), with
a view to taking corrective action. Such action includes rescheduling the queries to run
at a time when more resources are available or rewriting the relevant query to use less
tempdb space, for example, replacing a hash join with a nested loop join.

9.2.2 Space used and not reclaimed in tempdb by session

This script shows you how much space is still being used by the completed batches of
SQL queries. Usually, any allocated space is reclaimed. This script is useful in showing
which sessions still have tempdb space associated with them.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT CAST(SUM(su.user_objects_alloc_page_count
 + su.internal_objects_alloc_page_count) * (8.0/1024.0)
 AS DECIMAL(20,3)) AS [SpaceUsed(MB)]
 , CAST(SUM(su.user_objects_alloc_page_count
 – su.user_objects_dealloc_page_count
 + su.internal_objects_alloc_page_count
 – su.internal_objects_dealloc_page_count)
 * (8.0/1024.0) AS DECIMAL(20,3)) AS [SpaceStillUsed(MB)]
 , su.session_id
 , ec.connection_id
 , es.login_name

Listing 9.5 Space used and reclaimed in tempdb for completed batches

Figure 9.4 Output showing tempdb space usage by session, for completed batches
www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 9 Database-level DMVs
 , es.host_name
 , st.text AS [LastQuery]
 , ec.last_read
 , ec.last_write
 , es.program_name
FROM sys.dm_db_session_space_usage su
INNER JOIN sys.dm_exec_sessions es ON su.session_id = es.session_id
LEFT OUTER JOIN sys.dm_exec_connections ec
 ON su.session_id = ec.most_recent_session_id
OUTER APPLY sys.dm_exec_sql_text(ec.most_recent_sql_handle) st
WHERE su.session_id > 50
GROUP BY su.session_id, ec.connection_id, es.login_name, es.host_name
 , st.text, ec.last_read, ec.last_write, es.program_name
ORDER BY [SpaceStillUsed(MB)] DESC

This script uses three DMVs and one DMF to find the space used and not reclaimed by
sessions; a brief description of each is given in table 9.3.

Joining the DMVs and the DMF gives us enough information to identify the tempdb
space used and not reclaimed by each session, across all the databases on the server.
The DMVs sys.dm_db_session_space_usage, sys.dm_exec_sessions, and sys.dm_exec_
connections are joined on their common key column session_id. The connection con-
tains the column most_recent_sql_handle, which is passed to the DMF sys.dm_
exec_sql_text to retrieve the text of the SQL query. A LEFT OUTER JOIN is used to join
sys.dm_exec_sessions and sys.dm_exec_connections because a session can have multi-
ple connections.

 Any system sessions that have a session_id of 50 or less are filtered out. The
amount of space used by a session is calculated by summing user_objects_alloc_
page_count and internal_objects_alloc_page_count. Similarly, the amount of space
not reclaimed is calculated as the difference between user_objects_alloc_page_count
and user_objects_dealloc_page_count added to the difference between internal_
objects_alloc_page_count and internal_objects_dealloc_page_count. The results are
sorted by the amount of space each session still owns. An example of the type of out-
put for this query is shown in figure 9.5.

Table 9.3 DMVs/DMF that reveal tempdb space used and not reclaimed by sessions for completed
batches

DMV/DMF Description

sys.dm_db_session_space_usage Contains details of space used by user and internal objects for
each session. Specifically, contains the number of pages allo-
cated and de-allocated by each session.

sys.dm_exec_sessions Contains details of sessions on SQL Server.

sys.dm_exec_connections Contains details of connections to SQL Server.

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
or plan_handle.
www.it-ebooks.info

http://www.it-ebooks.info/

235Task usage in tempdb
The output shows, for completed batches, the amount of space in tempdb that each
session still has associated with it, along with details of the session and connection that
allow you to report on where the query is running from (host_name), who is running
the SQL query (login_name), and the text of the last-completed SQL query. If space
usage is a problem (as reported in the SQL Server error log), you can use the output
to determine which session/user/SQL query is using the most space, with a view to
taking corrective action. Such action includes rescheduling the queries to run at a
time when more resources are available or rewriting the relevant query to use less
tempdb space, for example, replacing a hash join with a nested loop join.

 Having looked at how space is used in tempdb by the different object types and
completed sessions, we’ll now look at how active batches of SQL (sometimes called
tasks) make use of tempdb space.

9.3 Task usage in tempdb
Tasks are batches of SQL queries that are currently running. Analyzing these can be use-
ful when you’re debugging space issues on production databases in real time.

 Here we’ll look at how much tempdb space is used by tasks and how much of it has
been released by SQL Server to be reused. Tasks that make excessive use of tempdb
space can lead to problems for other SQL queries that use tempdb and might necessi-
tate the rescheduling of certain SQL queries.

 The core DMV used is sys.dm_db_task_space_usage, which contains, for each ses-
sion, details of the number of pages allocated (and de-allocated) for both user objects
and internal objects, for currently active batches of SQL queries.

9.3.1 Space used by running SQL queries

This script shows you how much space each session is using in tempdb. It shows both
allocated page counts and de-allocated (reclaimed) page counts, for a batch of SQL
queries that are currently active. Ideally, any allocated storage would be reclaimed rel-
atively quickly. If this isn’t the case, it perhaps indicates some coordination problems
within SQL Server itself.

 The script used to find the space usage by task is given in the following listing.

Figure 9.5 Output showing tempdb space used and reclaimed by session
www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 9 Database-level DMVs
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT es.session_id
 , ec.connection_id
 , es.login_name
 , es.host_name
 , st.text
 , tu.user_objects_alloc_page_count
 , tu.user_objects_dealloc_page_count
 , tu.internal_objects_alloc_page_count
 , tu.internal_objects_dealloc_page_count
 , ec.last_read
 , ec.last_write
 , es.program_name
FROM sys.dm_db_task_space_usage tu
INNER JOIN sys.dm_exec_sessions es ON tu.session_id = es.session_id
LEFT OUTER JOIN sys.dm_exec_connections ec
 ON tu.session_id = ec.most_recent_session_id
OUTER APPLY sys.dm_exec_sql_text(ec.most_recent_sql_handle) st
WHERE tu.session_id > 50

In the listing, you can see that three DMVs and one DMF are involved in finding the
space used by sessions of currently active batches. Table 9.4 provides a brief descrip-
tion of each.

By joining the DMVs and the DMF, we obtain enough information to identify the
tempdb space used by each session, for active batches, across all the databases on the
server. The DMVs sys.dm_db_task_space_usage, sys.dm_exec_sessions, and sys.dm_
exec_connections are joined on their common key column session_id. The connec-
tion contains the column most_recent_sql_handle, which is passed to the DMF
sys.dm_exec_sql_text to retrieve the text of the SQL query. A LEFT OUTER JOIN is used
to join sys.dm_exec_sessions and sys.dm_exec_connections because a session can have
multiple connections. We filter out any system sessions that have a session_id of 50 or
less. An example of the type of output for this query is shown in figure 9.6.

 The output shows the relevant space columns together with details of the ses-
sion and connection that allow us to report on where the query is running from

Listing 9.6 Space usage by task

Table 9.4 DMVs/DMF used to show tempdb space used by sessions for active batches

DMV/DMF Description

sys.dm_db_task_space_usage Contains details of space used by user and internal objects for
each session, for active SQL queries

sys.dm_exec_sessions Contains details of sessions on SQL Server

sys.dm_exec_connections Contains details of connections to SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
www.it-ebooks.info

http://www.it-ebooks.info/

237Task usage in tempdb
(host_name), who is running the SQL query (login_name), and the text of the last-
completed SQL query. If space usage is a problem (as reported in the SQL Server
error log), you can use the output to determine which session/user/SQL query is
using the most space and how that space is composed (user object or internal
objects), with a view to taking corrective action. Such action includes rescheduling
the queries to run at a time when more resources are available or rewriting the rele-
vant query to use less tempdb space, for example, replacing a hash join with a
nested loop join.

9.3.2 Space used and not reclaimed by active SQL queries

This script shows you how much space is still being used by the active batches of SQL
queries. Usually, any allocated space is reclaimed. This script is useful in showing
which sessions still have tempdb space associated with them.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT SUM(ts.user_objects_alloc_page_count
 + ts.internal_objects_alloc_page_count)
 * (8.0/1024.0) AS [SpaceUsed(MB)]
 , SUM(ts.user_objects_alloc_page_count
 – ts.user_objects_dealloc_page_count
 + ts.internal_objects_alloc_page_count
 – ts.internal_objects_dealloc_page_count)
 * (8.0/1024.0) AS [SpaceStillUsed(MB)]
 , ts.session_id
 , ec.connection_id
 , es.login_name
 , es.host_name
 , st.text AS [Parent Query]
 , SUBSTRING (st.text,(er.statement_start_offset/2) + 1,
 ((CASE WHEN er.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), st.text)) * 2
 ELSE er.statement_end_offset
 END - er.statement_start_offset)/2) + 1) AS [Current Query]
 , ec.last_read
 , ec.last_write
 , es.program_name

Listing 9.7 Space used and not reclaimed in tempdb for active batches

Figure 9.6 Output showing tempdb space usage by object type, for active batches
www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 9 Database-level DMVs
FROM sys.dm_db_task_space_usage ts
INNER JOIN sys.dm_exec_sessions es ON ts.session_id = es.session_id
LEFT OUTER JOIN sys.dm_exec_connections ec
 ON ts.session_id = ec.most_recent_session_id
OUTER APPLY sys.dm_exec_sql_text(ec.most_recent_sql_handle) st
LEFT OUTER JOIN sys.dm_exec_requests er ON ts.session_id = er.session_id
WHERE ts.session_id > 50
GROUP BY ts.session_id, ec.connection_id, es.login_name, es.host_name
 , st.text, ec.last_read, ec.last_write, es.program_name
 , SUBSTRING (st.text,(er.statement_start_offset/2) + 1,
 ((CASE WHEN er.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), st.text)) * 2
 ELSE er.statement_end_offset
 END - er.statement_start_offset)/2) + 1)
ORDER BY [SpaceStillUsed(MB)] DESC

As you can see, three DMVs and one DMF are involved in finding the space used and
not reclaimed by sessions; a brief description of each is shown in table 9.5.

The joining of the DMVs and the DMF produces enough information to identify the
tempdb space used and not reclaimed by each session, across all the databases on the
server. The DMVs sys.dm_db_task_space_usage, sys.dm_exec_sessions, and sys.dm_
exec_connections are joined on their common key column session_id. The connec-
tion contains the column most_recent_sql_handle, which is passed to the DMF
sys.dm_exec_sql_text to retrieve the text of the SQL query. A LEFT OUTER JOIN is used
to join sys.dm_exec_sessions and sys.dm_exec_connections because a session can have
multiple connections.

 Any system sessions that have a session_id of 50 or less are filtered out. The
amount of space used by a task is calculated by summing user_objects_alloc_
page_count and internal_objects_alloc_page_count. Similarly, the amount of space
not reclaimed is calculated as the sum of the difference between user_objects_
alloc_page_count and user_objects_dealloc_page_count and the difference between
internal_objects_alloc_page_count and internal_objects_dealloc_page_count. The
results are sorted by the amount of space each session still owns. Sample output for
this query is shown in figure 9.7.

Table 9.5 DMVs/DMF that reveal tempdb space used and not reclaimed by sessions for active batches

DMV/DMF Description

sys.dm_db_task_space_usage Contains details of space used by user and internal objects for
each session, for active SQL queries

sys.dm_exec_sessions Contains details of sessions on SQL Server

sys.dm_exec_connections Contains details of connections to SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
www.it-ebooks.info

http://www.it-ebooks.info/

239Tempdb recommendations
The output shows, for active batches, the amount of space in tempdb that each session
still has associated with it, together with details of the session and connection that
allow you to report on where the query is running from (host_name), who is running
the SQL query (login_name), and the text of the last-completed SQL query. If space
usage is a problem (as reported in the SQL Server error log), you can use the output
to determine which session/user/SQL query is using the most space, with a view to
taking corrective action. Such action includes rescheduling the queries to run at a
time when more resources are available or rewriting the relevant query to use less
tempdb space, for example, replacing a hash join with a nested loop join.

 Having looked at how objects, sessions, and tasks make use of tempdb and the
potential problems that can arise, I’ll now provide some recommendations that
should improve the usage of tempdb.

9.4 Tempdb recommendations
Tempdb is a shared resource, used by all the other databases on the server instance.
Problems in tempdb can result in problems in any other database on SQL Server. You
can use the recommendations given in table 9.6 to help optimize it.

Table 9.6 Tempdb recommendations

Recommendation Description

Put tempdb on its own disk. If tempdb has its own disk and controller, it doesn’t contend with
other databases for this resource, thus improving concurrency
and performance.

Set tempdb’s initial size
appropriately.

When the server is rebooted, tempdb is created from the definition
of the model database. Typically, the default values (8 MB data file
and 1 MB transaction) are insufficient. If you monitor tempdb’s size
regularly, you’ll know what value to set its initial size to.

Pre-grow tempdb. Growing the size of database files can take time. I’ve seen cases
where some client applications have terminated with timeout errors
due to file growth happening. If you know the expected pattern of
file growth, it makes sense to pre-grow the files. This applies to all
databases files, not just tempdb. I would recommend you investi-
gate Instant File Initialization (IFI), because it can dramatically
speed up the growing of files. In addition, to minimize any impact on
performance, any pre-growth should be done during quiet periods of
activity.

Figure 9.7 Output showing tempdb space usage by object type
www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 9 Database-level DMVs
Having looked at tempdb and its space usage, we’ll now look at another group of data-
base-related DMVs that relate to index contention.

9.5 Index contention
The DMV sys.dm_db_index_operational_stats can be used to extract lots of valuable
information concerning indexes. This information includes identifying indexes under
locking pressure, escalated locks on indexes, and the occurrence of page splits. I’ll
explain each of these in the relevant section.

 The sys.dm_db_index_operational_stats DMV takes four parameters:

■ Database_id—Id of the database
■ Object_id—Object id of the table or view the index is on
■ Index_id—Id of the index
■ Partition_number—Partition number of the object

In our case, we’re typically interested in all the objects/indexes/partitions, so when
we use the DMV, we supply the database_id as the id of the database the script is run-
ning in. All the other parameters are NULL, ensuring all information for the current
database is reported.

 In the scripts, the DMV is joined to various system views (sys.objects, sys.indexes,
and sys.schemas) to allow descriptive information about the index to be reported on.
In most of the listings, you’ll see that one DMV and three system views are used. A brief
description of each is given in table 9.7.

Don’t drop temporary
tables explicitly.

I’ve seen the performance of some routines improve dramatically by
not explicitly dropping temporary tables. The temp tables will auto-
matically fall out of scope and the space will be reclaimed when SQL
Server has time. In many ways, this is similar to how the garbage
collector in .NET reclaims storage, when it is able to.

Monitor tempdb space
usage regularly.

This can be daily or weekly or even monthly, depending on your sys-
tem usage. The point I want to make is that monitoring should
remove any upcoming surprises (make sure you actually read the
output from the monitoring!).

Use multiple data files
for tempdb.

Spreading tempdb over several files helps prevent the inherent con-
tention problems that come with the shared usage of tempdb. One
area of contention is around the pages that contain details of what
is where on tempdb and its usage, for example, Page Free Space
(PFS) and Shared Global Allocation Map (SGAM) pages. As a start-
ing point, the number of files should equal the number of proces-
sor cores. These different files should be the same size because
this allows SQL Server’s round-robin algorithm to spread the load
more easily.

Table 9.6 Tempdb recommendations (continued)

Recommendation Description
www.it-ebooks.info

http://www.it-ebooks.info/

241Index contention
Often I see scripts that report on the number of times an event has occurred, for
example, the number of times that index-locking pressure has occurred. Because
users would typically experience problems in terms of waiting, I feel it’s more appro-
priate to report on the time involved rather than the count values, even though
there’s probably a degree of correlation.

 Within the results, instead of concentrating on specific indexes, it might make
more sense to look for groups of indexes that have the same underlying table. This
might indicate a fundamental problem with the underlying table, for example, the
table may be over-indexed or incorrectly normalized.

 In all the scripts in this section, you should run the script in the database about
which you’re recording the results. When I talk about data being updated or modified,
I’m referring to data that is inserted, updated, or deleted, unless otherwise stated.

9.5.1 Indexes under row-locking pressure

When data in a table is being modified (that is, updated, inserted, or deleted), locks
are taken on the associated indexes. If many queries are doing similar things, this
locking may cause some queries to wait, increasing their duration and resulting in a
decrease in their performance. Examining the indexes that are under the most lock-
ing pressure will allow you to investigate the cause of the excess pressure, with a view
to reducing it, allowing better concurrency and performance.

 The script we use to find the indexes under the most row-locking pressure is
shown next.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 x.name AS SchemaName
 , OBJECT_NAME(s.object_id) AS TableName
 , i.name AS IndexName
 , s.row_lock_wait_in_ms
 , s.row_lock_wait_count
FROM sys.dm_db_index_operational_stats(db_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id

Table 9.7 DMV/system views used for investigating index contention

DMV/system view Description

sys.dm_db_index_operational_stats Contains details of low-level I/O, locking, latching for each
index in the given database

sys.objects Contains details of objects in the database

sys.indexes Contains details of indexes in the database

sys.schemas Contains details of schemas in the database

Listing 9.8 Indexes under the most row-locking pressure
www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 9 Database-level DMVs
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE s.row_lock_wait_in_ms > 0
 AND o.is_ms_shipped = 0
ORDER BY s.row_lock_wait_in_ms DESC

The DMV sys.dm_db_index_operational_stats is linked to the sys.object view via their com-
mon object_id key. Similarly, the DMV is linked to the sys.indexes view via their
shared index_id key. The sys.objects view is linked to the sys.schemas view via their com-
mon schema_id key.

 The script reports on the TOP 20 indexes that have the most locking pressure as
shown by the row_lock_wait_in_ms column. The results are sorted by row_lock_
wait_in_ms in descending order, so the most important ones are reported first. An
example of the type of output for this query is shown in figure 9.8.

 The output identifies the name of the schema, table, and index of the indexes
that are under the most row-locking pressure. It shows the amount of time involved
in waiting for the lock to clear (in milliseconds) and the number of times this lock-
ing occurred.

 Examining the indexes that are under the most locking pressure will allow you to
investigate why the locking is occurring. You could create a snapshot delta (see chap-
ter 2 for details of this) to obtain details of the locking pressure along with which que-
ries are running. An example of this is given toward the end of this chapter in the
section titled “Indexes under row-locking pressure—snapshot version.” You could
then examine the relationship between these, allowing you to identify the queries
causing the delay due to locking. In addition, searching the cached plans (chapter 4)
will identify where these specific indexes are used. Knowing the problematic indexes
and where they’re used, you can aim to reduce the index contention.

 Such methods that could reduce index contention include running the contended
queries at different times, perhaps lowering the transaction isolation level, and creat-
ing new indexes allowing other access paths to reduce the contention.

 The previous script looked at indexes under row-level locking pressure. It’s possi-
ble to look at locking pressure at the page level by replacing the column row_lock_
wait_in_ms with page_lock_wait_in_ms.

Figure 9.8 Output showing indexes under row-locking pressure
www.it-ebooks.info

http://www.it-ebooks.info/

243Index contention
The high values reported might be indicative of too many conflicting and related que-
ries running at the same time; better scheduling might alleviate the problem. I recom-
mend that you revisit the section concerning recommendations for decreasing
blocking in chapter 8 to review methods of decreasing contention.

9.5.2 Escalated indexes

SQL Server typically chooses an appropriate locking strategy for SQL queries; this is
usually a row or page-level lock. But if more than a given number of objects (for
example, 5,000 rows) need to be locked, SQL Server will often escalate (or promote)
the lock to a higher level in the database object hierarchy (see chapter 8 for greater
detail about this). The typical threshold for escalating locks is 5,000 objects. A query
that has its locks escalated typically runs faster because less time is spent in the man-
agement of lower-level resources. Also, because the higher-level locks are taken, it
should spend less time being blocked. Conversely, other related queries running at
the same time as the escalated-locks query will typically run slower because they may
experience blocking.

 The script we use to find the indexes with most lock escalations follows.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 x.name AS SchemaName
 , OBJECT_NAME (s.object_id) AS TableName
 , i.name AS IndexName
 , s.index_lock_promotion_count
FROM sys.dm_db_index_operational_stats(db_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE s.index_lock_promotion_count > 0
 AND o.is_ms_shipped = 0
ORDER BY s.index_lock_promotion_count DESC

The script uses the same joins as the script in listing 9.8 (indexes under locking pres-
sure) but reports on the column index_lock_promotion_count. The results are
sorted by index_lock_promotion_count in descending order, so the most important
ones are reported first. An example of the type of output for this query is shown in
figure 9.9.

 The output identifies the name of the schema, table, and index of the indexes that
have had the most index-lock escalations.

 Examining the indexes that have had the most index-lock escalations will allow
you to investigate why the escalation is occurring. You could create a snapshot delta
(see chapter 2 for details of this) to obtain details of the lock escalations, together

Listing 9.9 Indexes with the most lock escalations
www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 9 Database-level DMVs
with which queries are running. It should be possible to examine the relationship
between these, allowing you to identify the queries causing the lock escalation. An
example of this is given toward the end of this chapter in the section titled
“Indexes under row-locking pressure—snapshot version.” You could also search the
cached plans (discussed in chapter 4) for details of where these indexes are used.
Knowing the problematic indexes and where they’re used, you can try to reduce the
lock promotions.

 High-value lock escalations might also indicate out-of-date statistics. The statis-
tics contain details of the distribution and density of data values; this is used when
creating a plan containing instruction on how the underlying data and indexes
are used.

 In addition, high values might be indicative of too many conflicting and related
queries running at the same time. Better scheduling or providing another index (giv-
ing a different access path to the underlying data) might alleviate the problem. If you
want the query to automatically acquire the higher locking level (to increase its per-
formance), it’s possible to achieve this using table hints.

9.5.3 Unsuccessful index-lock promotions

Not all lock promotions are successful. It may not be possible for the query to acquire
the higher-level locks because of other SQL queries holding locks on related data. In
this case, after every further 1,250 objects locked (above the aforementioned 5,000-
objects threshold), escalation of the locks will be attempted again. Each time the esca-
lation is attempted, the appropriate DMV columns are updated.

 The script we use to find the indexes with the most unsuccessful lock escalations is
shown in the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 x.name AS SchemaName
 , OBJECT_NAME (s.object_id) AS TableName
 , i.name AS IndexName

Listing 9.10 Indexes with the most unsuccessful lock escalations

Figure 9.9
Output showing index-lock
promotion counts
www.it-ebooks.info

http://www.it-ebooks.info/

245Index contention
 , s.index_lock_promotion_attempt_count – s.index_lock_promotion_count
 AS UnsuccessfulIndexLockPromotions
FROM sys.dm_db_index_operational_stats(db_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE (s.index_lock_promotion_attempt_count - index_lock_promotion_count)>0
 AND o.is_ms_shipped = 0
ORDER BY UnsuccessfulIndexLockPromotions DESC

The script uses the same joins as the script in listing 9.8 (indexes under locking pres-
sure) but calculates the number of unsuccessful lock promotions as the difference
between index_lock_promotion_count and index_lock_promotion_attempt_count.
The results are sorted by the number of unsuccessful lock promotions, in descending
order, so the most important ones are reported first. Sample output for this query is
shown in figure 9.10.

 The output identifies the name of the schema, table, and index of the indexes that
have had the highest number of unsuccessful index-lock promotions. Again, creating
a snapshot delta containing details of the SQL queries running at the time of the
unsuccessful lock promotions will enable you to determine the cause of the lack of
lock promotions. It may be that too many related jobs are running at the same time;
scheduling should help with this.

 If you want the query to automatically acquire the higher locking level to increase
its performance, it’s possible to achieve this using table hints. I recommend you revisit
the section concerning recommendations for decreasing blocking in chapter 8 to
review methods of decreasing contention.

9.5.4 Indexes with the most page splits

Page splits occur when data is updated or inserted and there’s insufficient space on
the page to hold the data. Page splits result in additional time being required to access
the data. Identifying these should allow you to take corrective action on the most
important ones and thus improve performance. The script used to find the indexes
with the most page splits is shown here.

Figure 9.10 Output showing unsuccessful index-lock promotions
www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 9 Database-level DMVs
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 x.name AS SchemaName
 , object_name(s.object_id) AS TableName
 , i.name AS IndexName
 , s.leaf_allocation_count
 , s.nonleaf_allocation_count
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE s.leaf_allocation_count > 0
 AND o.is_ms_shipped = 0
ORDER BY s.leaf_allocation_count DESC

The script uses the same joins as the script in listing 9.8 (indexes under locking pres-
sure) but reports on the column leaf_allocation_count; this corresponds to the num-
ber of page splits. The results are sorted by leaf_allocation_count in descending order,
so the most important ones are reported first. An example of the type of output for
this query is shown in figure 9.11.

 One possible solution to reduce the number of page splits is to use a low fill factor
when creating the index. That, however, can have a detrimental effect on reads.
Because there’s less data on a page, more data needs to be read, resulting in more I/O
and CPU usage and decreased performance. A balanced solution between reads and
writes is needed. You can examine your indexes to identify which ones are used mostly
for reads rather than for modification and alter the fill factor accordingly.

Listing 9.11 Indexes with the most page splits

A word of warning
Be careful if your clustered index is on an identity column that’s used as the pri-
mary key. New rows will be added to the last page. If many queries are running and
trying to insert data at the same time, it can result in a high number of page splits.
This can also result in page latch waits.

Figure 9.11 Output showing indexes with the most page splits
www.it-ebooks.info

http://www.it-ebooks.info/

247Index contention
Over time, the free space on the index page gets used up. Rebuilding your indexes
allows the fill factor’s free space to be reset to its original value, resulting in more
space being made available for any changes. Rebuilding your indexes more often
should also help reduce the number of page splits.

 Next up, we’ll look at page latch waits.

9.5.5 Indexes with most latch contention

Latches are used by SQL Server as short-term synchronization objects. In many ways
they’re similar to locks but relate to internal SQL Server structures. Like locks, they
have an associated duration, and a high latch wait is generally a bad thing, typically
resulting in decreased performance and decreased concurrency.

 The script we use to find the indexes with most latch contention follows.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 x.name AS SchemaName
 , OBJECT_NAME(s.object_id) AS TableName
 , i.name AS IndexName
 , s.page_latch_wait_in_ms
 , s.page_latch_wait_count
FROM sys.dm_db_index_operational_stats(db_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE s.page_latch_wait_in_ms > 0
 AND o.is_ms_shipped = 0
ORDER BY s.page_latch_wait_in_ms DESC

The script uses the same joins as the script in listing 9.8 (indexes under lock-
ing pressure) but reports on the column page_latch_wait_in_ms. The results are
sorted by page_latch_wait_in_ms in descending order, so the most important
ones are reported first. Figure 9.12 shows an example of the type of output for
this query.

Listing 9.12 Indexes with the most latch contention

Figure 9.12 Output showing indexes with most latch contention
www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 9 Database-level DMVs
The output identifies the name of the schema, table, and index of the indexes that
have had the most page latch waits.

 A common cause of page latches is a poorly performing I/O subsystem. Checking
the various disk-related performance counters (as discussed in chapter 6) should help
you identify whether this is the problem here. Another common cause can be conten-
tion on internal system tables. We discussed this previously in this chapter in relation
to tempdb, but it applies equally to other databases. Certain pages within each data-
base file contain allocation information (for example, see the PFS and SGAM pages, as
discussed in the tempdb recommendations section of this chapter); these can be
sources of contention if many queries access them concurrently. Creating more files
should help alleviate this problem.

 Latches can also be caused by the combination of clustered index/primary key/
identity column usage. In essence, new rows are added to the last page, and if many
queries are running, this creates contention, resulting in page latch waits. This can
have the additional detrimental effect of creating page splits. A potential solution is to
reorder the columns in the index; however, you’ll need to ensure that this doesn’t
have a subsequent detrimental effect on query performance.

 Examining the indexes that have had the most page latch waits will allow you to
investigate why the waiting is occurring. You could create a snapshot delta (see chap-
ter 2 for details of this) to obtain details of the page waits as well as which queries are
running. It should be possible to examine the relationship between these, allowing
you to identify the queries causing the page waits. An example of this is given toward
the end of this chapter in the section titled “Indexes under row-locking pressure—
snapshot version.” You could also search the cached plans (discussed in chapter 4) for
details of where these indexes are used. Knowing the problematic indexes and where
they’re used can help you reduce the page waits.

 Also, high values might be indicative of too many conflicting and related queries
running at the same time. Better scheduling or providing another index might allevi-
ate the problem. I recommend that you revisit the section concerning decreasing
blocking in chapter 8 to review methods of decreasing contention.

9.5.6 Indexes with most page I/O-latch contention

Page I/O latches are similar to page latches, but where the I/O has yet to com-
plete. It relates to the physical I/O used to bring the index or heap data into
the buffer pool (SQL Server’s memory). High time values can indicate problems
with the I/O subsystem or concurrency contention problems, both of which can
decrease performance.

 The script we use to find the indexes with most page I/O-latch contention is shown
in the following listing.
www.it-ebooks.info

http://www.it-ebooks.info/

249Index contention
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 x.name AS SchemaName
 , OBJECT_NAME(s.object_id) AS TableName
 , i.name AS IndexName
 , s.page_io_latch_wait_count
 , s.page_io_latch_wait_in_ms
FROM sys.dm_db_index_operational_stats(db_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE s.page_io_latch_wait_in_ms > 0
 AND o.is_ms_shipped = 0
ORDER BY s.page_io_latch_wait_in_ms DESC

This script uses the same joins as the script in listing 9.8 (indexes under locking pres-
sure) but reports on the column page_io_latch_wait_in_ms. The results are sorted by
page_io_latch_wait_in_ms in descending order, so the most important ones are
reported first. Sample output for this query is shown in figure 9.13.

 The output identifies the name of the schema, table, and index of the indexes that
have had the most page I/O-latch waits. The cause of these page I/O-latches and a pos-
sible solution are discussed in the previous section relating to page latches.

9.5.7 Indexes under row-locking pressure—snapshot version

Previously in this section, we looked at the values of the various DMV counters accu-
mulated since the server was last rebooted. Sometimes it’s more prudent to take a
snapshot of the DMVs within a given time interval or while running a given batch or
SQL query. This will allow you to associate the changes in the DMVs with the known
queries. In this example, the time period is 60 minutes, but you may want to alter this
time interval to suit your needs.

 The script we use to find the indexes under the most row-locking pressure (snap-
shot version) is shown here.

Listing 9.13 Indexes with the most page I/O-latch contention

Figure 9.13 Output showing indexes with most page I/O-latch contention
www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 9 Database-level DMVs
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT x.name AS SchemaName
 , OBJECT_NAME (s.object_id) AS TableName
 , i.name AS IndexName
 , s.row_lock_wait_in_ms
INTO #PreWorkIndexCount
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE s.row_lock_wait_in_ms > 0
 AND o.is_ms_shipped = 0

SELECT sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

WAITFOR DELAY '01:00:00'

SELECT x.name AS SchemaName
 , OBJECT_NAME (s.object_id) AS TableName
 , i.name AS IndexName
 , s.row_lock_wait_in_ms
INTO #PostWorkIndexCount
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE s.row_lock_wait_in_ms > 0
 AND o.is_ms_shipped = 0

SELECT sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.SchemaName
 , p2.TableName
 , p2.IndexName
 , p2.row_lock_wait_in_ms - ISNULL(p1.row_lock_wait_in_ms, 0)
 AS RowLockWaitTimeDelta_ms
FROM #PreWorkIndexCount p1
RIGHT OUTER JOIN
#PostWorkIndexCount p2 ON p2.SchemaName =
 ISNULL(p1.SchemaName, p2.SchemaName)
 AND p2.TableName = ISNULL(p1.TableName, p2.TableName)
 AND p2.IndexName = ISNULL(p1.IndexName, p2.IndexName)

Listing 9.14 Indexes under the most row-locking pressure—snapshot version

Get pre-work
index counters

B

Do something here,
(query/time interval)

C

Get post-work
index countersD

Calculate changes
in index counters

E

www.it-ebooks.info

http://www.it-ebooks.info/

251Index contention
WHERE p2.row_lock_wait_in_ms - ISNULL(p1.row_lock_wait_in_ms, 0) > 0
ORDER BY RowLockWaitTimeDelta_ms DESC

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) –
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
 AND qt.text NOT LIKE '--ThisRoutineIdentifier%'
ORDER BY [Duration] DESC

DROP TABLE #PreWorkIndexCount
DROP TABLE #PostWorkIndexCount
DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot

The listing follows the approach outlined in chapter 2, where metrics of the relevant
DMV/system views are recorded B. The script then waits until a given time interval
has passed C. The metrics are then taken again D, and finally the change in the DMV
counters is calculated E. We do this for both the DMV counter that we’re investigating
(row_lock_wait_in_ms in this case) and the queries that are running. We use a RIGHT
OUTER JOIN because there may be indexes that might not have been used before, so
they wouldn’t be present in the pre-work snapshot. An example of the type of output
for this query is shown in figure 9.14.

 The output identifies the name of the schema, table, and index of the indexes that
have had the most row-lock wait times, together with details of the queries that have
run over the time interval examined.

Sort by time
spent locked

Sort by time
duration
www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 9 Database-level DMVs
It’s possible to replace the time interval with a batch of SQL queries. In either case the
queries that run in the given time interval or by explicitly including a batch of SQL
queries can be associated with the recorded results. A caveat regarding this method is
that it records details of all the queries that are currently running on your database. In
the case of contention, this may not be a problem (indeed it may be exactly what you
want to record). You can filter out queries that aren’t running in the current database.

 It’s possible to combine this script with other snapshot-related queries (for exam-
ple, those in chapter 5) to display what other DMV changes are also occurring. This
includes which SQL queries are running and missing indexes.

 It would be interesting to examine which indexes were deemed missing, because
this might be the reason for the excessive pressure on the indexes examined here.

 The snapshot script given here, while useful, is for illustrative purposes. You can
replace the DMV columns examined (row_lock_wait_in_ms) with any (or all) of the
DMV columns discussed in this section to get a better understanding of what happens
when your queries run.

9.5.8 How many rows are being inserted/deleted/updated/selected?

In chapter 3 we looked at various aspects of index usage, including the number of
modifications (updates, inserts, and deletes) that occur during a given time interval
or when a given batch of SQL queries is run. The DMV sys.dm_db_index_usage_stats
records this information at the batch level. For example, if a SQL query updates 20
rows, it would record this as 1 in the relevant DMV column rather than 20. Luckily, the
DMV we’re currently examining (sys.dm_db_index_operational_stats) enables us to
discover how each index is changed by recording the number of rows affected by
updates, deletes, inserts, scans, and lookups.

 If the index has an entry for every row in its underlying table, then the index indi-
rectly records the activity on its underlying table. This can be useful in determining
the range (type of modification) and depth (number of rows affected) of a batch of
SQL queries or an overnight batch. It can also be useful for baselining, monitoring,
capacity planning, defragging, and updating statistics. In this example, the time
period is 60 minutes; you can change this value to suit your needs.

Figure 9.14 Output showing indexes under row-locking pressure (snapshot version)
www.it-ebooks.info

http://www.it-ebooks.info/

253Index contention
 The script we use to find how many rows are inserted/deleted/updated/selected is
shown in the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT x.name AS SchemaName
 , OBJECT_NAME (s.object_id) AS TableName
 , i.name AS IndexName
 , s.leaf_delete_count
 , s.leaf_ghost_count
 , s.leaf_insert_count
 , s.leaf_update_count
 , s.range_scan_count
 , s.singleton_lookup_count
INTO #PreWorkIndexCount
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE o.is_ms_shipped = 0

WAITFOR DELAY '01:00:00'

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT x.name AS SchemaName
 , OBJECT_NAME (s.object_id) AS TableName
 , i.name AS IndexName
 , s.leaf_delete_count
 , s.leaf_ghost_count
 , s.leaf_insert_count
 , s.leaf_update_count
 , s.range_scan_count
 , s.singleton_lookup_count
INTO #PostWorkIndexCount
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) s
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.indexes i ON s.index_id = i.index_id
 AND i.object_id = o.object_id
INNER JOIN sys.schemas x ON x.schema_id = o.schema_id
WHERE o.is_ms_shipped = 0

Listing 9.15 Determining how many rows are inserted/deleted/updated/selected

Get pre-work
index counters

B

Do something here,
(query/time interval)

C

Get post-work
index counters

D

www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 9 Database-level DMVs
SELECT
 p2.SchemaName
 , p2.TableName
 , p2.IndexName
 , p2.leaf_delete_count - ISNULL(p1.leaf_delete_count, 0)
 AS leaf_delete_countDelta
 , p2.leaf_ghost_count - ISNULL(p1.leaf_ghost_count, 0)
 AS leaf_ghost_countDelta
 , p2.leaf_insert_count - ISNULL(p1.leaf_insert_count, 0)
 AS leaf_insert_countDelta
 , p2.leaf_update_count - ISNULL(p1.leaf_update_count, 0)
 AS leaf_update_countDelta
 , p2.range_scan_count - ISNULL(p1.range_scan_count, 0)
 AS range_scan_countDelta
 , p2.singleton_lookup_count - ISNULL(p1.singleton_lookup_count, 0)
 AS singleton_lookup_countDelta
FROM #PreWorkIndexCount p1
RIGHT OUTER JOIN
#PostWorkIndexCount p2 ON p2.SchemaName =
 ISNULL(p1.SchemaName, p2.SchemaName)
 AND p2.TableName = ISNULL(p1.TableName, p2.TableName)
 AND p2.IndexName = ISNULL(p1.IndexName, p2.IndexName)
WHERE p2.leaf_delete_count - ISNULL(p1.leaf_delete_count, 0) > 0
 OR p2.leaf_ghost_count - ISNULL(p1.leaf_ghost_count, 0) > 0
 OR p2.leaf_insert_count - ISNULL(p1.leaf_insert_count, 0) > 0
 OR p2.leaf_update_count - ISNULL(p1.leaf_update_count, 0) > 0
 OR p2.range_scan_count - ISNULL(p1.range_scan_count, 0) > 0
 OR p2.singleton_lookup_count - ISNULL(p1.singleton_lookup_count, 0) > 0
ORDER BY leaf_delete_countDelta DESC

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) –
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
 #PostWorkQuerySnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)

Calculate changes
in index countersE
www.it-ebooks.info

http://www.it-ebooks.info/

255Index contention
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
ORDER BY [Duration] DESC

DROP TABLE #PreWorkIndexCount
DROP TABLE #PostWorkIndexCount
DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot

The listing follows the familiar approach outlined in chapter 2, where metrics of the
relevant DMV/system views are recorded B. The script then waits until a given time
interval has passed C. The metrics are then taken again D, and finally the change in
the DMV counters is calculated E. We do this for both the DMV counters we’re investi-
gating (counters that relate to the number of rows, in this case) and the queries that
are running. We use a RIGHT OUTER JOIN because there may be indexes that might
not have been used before, so they wouldn’t be present in the pre-work snapshot. The
time interval can be replaced with a given SQL query or batch of SQL queries.

 An overview of the columns in the script is given in table 9.8.

Figure 9.15 shows an example of the type of output for this query.

Table 9.8 Columns used in the row index usage script

Column Description

leaf_delete_count Count of the number of rows deleted

leaf_ghost_count Count of the number of rows marked as deleted that have yet to be
removed, examined together with the column leaf_delete_count

leaf_insert_count Count of the number of rows inserted

leaf_update_count Count of the number of rows updated

range_scan_count Count of the number of scans started on this index

singleton_lookup_count Count of the number of single rows looked up

Figure 9.15 Output showing index column usage
www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 9 Database-level DMVs
The results show how the indexes are used by the SQL queries. The figure shows three
grids. The first grid is the output from running a given SQL query (note that for this
output, a query was run in place of the WAITFOR command). The second grid shows
the number of rows modified in the named index. The third grid shows which SQL
queries were running during the period this script was run.

9.6 Summary
This chapter has been a rather mixed bag of functionality, falling under the name of
database-level DMVs. In reality, we’ve taken an in-depth look at tempdb, examining
how its space is used by its different object types (user, internal, and version store). I
showed you scripts to determine the amount of free space, which can be useful in pre-
venting space problems and capacity planning.

 We also examined how much space has been used by given sessions, with a view to
identifying sessions that might be using too much and are a possible area of concern.
We then looked at the space used by currently active SQL queries; this can prove use-
ful when debugging an active space problem on a server. Finally, I provided some
helpful performance recommendations concerning tempdb.

 The next major area covered was index contention. This allowed us to create and
discuss scripts that relate to

■ Row-lock pressure
■ Escalated indexes
■ Unsuccessful lock promotions
■ Latch contention

We also discussed a DMV snapshot script showing how row-lock pressure changes over
a given time period. While useful, this was provided for illustrative purposes, but you
can modify or extend it to incorporate escalated indexes, unsuccessful lock promo-
tions, and latch contention.

 I provided a script to determine how queries affect the number of rows in indexes.
This can be useful for baselining, monitoring, capacity planning, defragging, and
updating statistics.

 Next we’ll look at how it might be possible to implement scripts that will automati-
cally improve the performance of queries running on SQL Server and lead to a self-
healing database.
www.it-ebooks.info

http://www.it-ebooks.info/

The self-healing database
The concept of a self-healing database relates to the ability of SQL Server to self-
correct problems and potential problems before they become noticeable to users.
You can implement this by creating a series of SQL Server agent jobs that run peri-
odically. This chapter covers a miscellany of functionality that collectively can auto-
matically improve the performance of your database queries.

 The scripts contained in this chapter will improve the performance of your
slow-running SQL queries. They accomplish this by recompiling routines that
have become slow, improving the retrieval of data from your indexes, intelligently

This chapter covers
■ The self-healing database and automation
■ Automatically recompiling slow routines
■ Automatically performing index and statistics

maintenance
■ Automatically disabling or dropping unused

indexes
■ Automatically creating the most-important

missing indexes
257

www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 10 The self-healing database
updating index statistics upon which your optimal query plans will be based, and cre-
ating or removing indexes as necessary.

 All the scripts build up dynamic SQL, which is subsequently executed via the sys-
tem stored procedure sp_executesql. The dynamic nature of the creation of the SQL
to execute allows you to apply further filtering conditions, for example, limiting the
SQL to a given database. Each script contains an EXECUTE command to run the SQL
and a PRINT command to show what’s being executed.

 Because some of these scripts can have wide-reaching and potentially detrimental
effects if used inappropriately, it makes sense to first test them in a nonproduction
environment. Additionally, it might be prudent to comment out the line in the script
that executes the dynamic SQL and instead use the output from the associated PRINT
command to inspect the SQL created to determine if it’s what is required. You can
then manipulate and apply this separately.

10.1 Self-healing database
SQL Server has many useful automated features, for example, automatically updating
statistics when the underlying data changes significantly and automatically growing
database files when required. This automation helps ensure that the system is tuned
and requires little maintenance input. But there are times when finer tuning is
needed for better performance.

 The underlying concept of this chapter is to present a series of scripts that will
help further improve the automatic and self-correcting nature of SQL Server, ensur-
ing that it’s finely tuned and helping fix problems before they become noticeable
to users.

 Hopefully, you can use the approach and patterns discussed, for example, to
implement missing indexes, as a template to implement other features as you
deem necessary.

 Having looked at the concept of the self-healing database, let’s get straight into our
first example, recompiling slow-running routines.

Automatically running the scripts
Each of the scripts given in this chapter should be implemented as an individual
SQL Server agent job. SQL Server agent allows you to create jobs that can be
scheduled to run automatically at regular intervals. In addition, you can communi-
cate details of the success or failure of the job to the relevant people via email,
pager, and the net send command.

How often these automated jobs should run will vary depending on the nature of
the database, namely, transactional or reporting, how often the data is updated,
and the data volumes involved. As an example, I could imagine the intelligently
update statistics job running as often as hourly, whereas the rebuild/reorganize
index script could run weekly or even monthly. It’s best to experiment on a test
system to determine an optimal frequency for your particular system.
www.it-ebooks.info

http://www.it-ebooks.info/

259Recompiling slow routines
10.2 Recompiling slow routines
Sometimes you can have a query that runs in a timely manner and then suddenly runs
slowly. Typically, this is the result of parameter sniffing, where the query plan is cre-
ated based on the parameter values passed to it when it’s first run. Although this may
be good for its first run, it can prove disastrous for subsequent runs, especially if the
underlying data has changed significantly or the parameters first used were atypical.

 We fully discussed the reason for slow-running queries and how to detect them in
chapter 5, section 5.5, “Slower-than-normal queries.”

 Here we’ll discuss how you can extend this script to automatically recompile these
slow-running routines. The identified routines will be marked for recompilation, such
that when they’re next used, their query plan will be re-created based on the parame-
ters used. Hopefully this will result in a better-performing query.

10.2.1 Recompiling routines that are running slower than usual

The script “Finding queries that are running slower than normal,” discussed in sec-
tion 5.5 of chapter 5, outputs the name of the routine that’s running slower than nor-
mal. To automate the routine’s recompilation, we’ll put the output into a temporary
table that can be queried to extract the routine name. These routine names can then
be wrapped in relevant SQL statements, so that when this script is executed, the identi-
fied routines will be marked to be recompiled on their next usage.

 Extracting the name of the routine from the output of the script proved a little
troublesome, owing to the variability in the format of the routine’s name and the lim-
its of SQL Server’s string function-parsing capabilities, so I decided to write a CLR
function to do it. You should deploy this function to your databases if you want to
implement this example. Details of how to create and deploy a CLR function are dis-
cussed fully in chapter 7, section 7.2. You should follow that example but use the code
given in listing 10.1 as the example CLR function.

 Here’s the script we use to extract the name of the routine from the SQL text.

using System;
using Microsoft.SqlServer.Server;

public partial class UserDefinedFunctions
{

 [SqlFunction(IsDeterministic = true, DataAccess = DataAccessKind.None)]
 public static String ExtractSQLRoutineName(String sSource)
 {

 int _routineStartOffset;
 int _firstSpaceOffset;
 int _endOfRoutineNameOffset;

 if (String.IsNullOrEmpty(sSource) == true)
 {

Listing 10.1 CLR function to extract the routine name

Extract SQL
routine name

B

Check data
present

C

www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 10 The self-healing database
 return null;
 }

 _routineStartOffset = sSource.IndexOf("CREATE PROC",
 StringComparison.CurrentCultureIgnoreCase);

 if (_routineStartOffset == -1)
 {
 _routineStartOffset = sSource.IndexOf("CREATE FUNC",
 StringComparison.CurrentCultureIgnoreCase);
 }

 if (_routineStartOffset == -1)
 {
 return null;
 }

 _routineStartOffset = _routineStartOffset + "CREATE FUNC".Length;

 _firstSpaceOffset = sSource.IndexOf(" ", _routineStartOffset);

 for (int i = _firstSpaceOffset; i < (sSource.Length - 1); i++)
 {
 if (sSource.Substring(i, 1) != " ")
 {
 _firstSpaceOffset = i;
 break;
 }
 }

 _endOfRoutineNameOffset = sSource.IndexOfAny(new char[] { ' ',
 '(', '\t', '\r', '\n' }, _firstSpaceOffset + 1);

 if (_endOfRoutineNameOffset > _routineStartOffset)
 {
 return sSource.Substring(_firstSpaceOffset,
 (_endOfRoutineNameOffset - _firstSpaceOffset));
 }
 else
 return null;
 }
};

The CLR function contains one function named ExtractSQLRoutineName B, which
extracts the SQL routine name from the passed string variable named sSource. The
function checks that the sSource variable is not NULL or empty C. If it is, then a
NULL value is returned to the caller. The function then looks for the position of the
text “CREATE PROC” D or “CREATE FUNC” E, ignoring the case, within the variable
sSource. If the text isn’t found, a NULL value is returned to the caller F. If the text is
found, we look for the start of the routine’s name G and the end of the routine’s
name H (this can be a space, bracket, tab, return, or newline I). Knowing these
start and end locations, we can extract the routine’s name J, which is returned to
the caller.

 Now that we’ve discussed the CLR function that’s used to extract the name of the
routine from the passed text, the next step is to amend the routine that identifies

Look for
PROC

D

If not found,
look for
FUNCTIONE

If not found,
return NULLF

Find space
before name

 G

Find space
after name H

Find end of
routine name

 I

Extract
routine nameJ
www.it-ebooks.info

http://www.it-ebooks.info/

261Recompiling slow routines
queries that are running slower than normal. This script is essentially the same as the
one discussed in chapter 5, section 5.5, except the output has been placed into a tem-
porary table. The name of the routine to recompile is extracted from this temporary
table, using the CLR function we just discussed. The routine name is wrapped in SQL
statements, which when executed will recompile the routines that are running slower
than normal.

 The script we use to automatically recompile routines that are running slower than
normal is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 100
 qs.execution_count AS [Runs]
 , (qs.total_worker_time - qs.last_worker_time) /
 (qs.execution_count - 1) AS [Avg time]
 , qs.last_worker_time AS [Last time]
 , (qs.last_worker_time - ((qs.total_worker_time - qs.last_worker_time)
 / (qs.execution_count - 1))) AS [Time Deviation]
 , CASE WHEN qs.last_worker_time = 0
 THEN 100
 ELSE (qs.last_worker_time - ((qs.total_worker_time –
 qs.last_worker_time) / (qs.execution_count - 1))) * 100
 END
 / (((qs.total_worker_time - qs.last_worker_time)
 / (qs.execution_count - 1))) AS [% Time Deviation]
 , qs.last_logical_reads + qs.last_logical_writes
 + qs.last_physical_reads AS [Last IO]
 , ((qs.total_logical_reads + qs.total_logical_writes +
 qs.total_physical_reads) - (qs.last_logical_reads +
 qs.last_logical_writes + qs.last_physical_reads))
 / (qs.execution_count - 1) AS [Avg IO]
 , SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1,
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS [DatabaseName]
INTO #SlowQueries
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.plan_handle) qt
WHERE qs.execution_count > 1
 AND qs.total_worker_time != qs.last_worker_time
ORDER BY [% Time Deviation] DESC

SELECT TOP 100 [Runs]
 , [Avg time]
 , [Last time]
 , [Time Deviation]
 , [% Time Deviation]
 , [Last IO]

Listing 10.2 Recompile routines that are running slower than normal

Get raw
valuesB

Calculate IO Deviation
and % IO DeviationC
www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 10 The self-healing database
 , [Avg IO]
 , [Last IO] - [Avg IO] AS [IO Deviation]
 , CASE WHEN [Avg IO] = 0
 THEN 0
 ELSE ([Last IO]- [Avg IO]) * 100 / [Avg IO]
 END AS [% IO Deviation]
 , [Individual Query]
 , [Parent Query]
 , [DatabaseName]
INTO #SlowQueriesByIO
FROM #SlowQueries
ORDER BY [% Time Deviation] DESC

SELECT TOP 100
 [Runs]
 , [Avg time]
 , [Last time]
 , [Time Deviation]
 , [% Time Deviation]
 , [Last IO]
 , [Avg IO]
 , [IO Deviation]
 , [% IO Deviation]
 , [Impedance] = [% Time Deviation] - [% IO Deviation]
 , [Individual Query]
 , [Parent Query]
 , [DatabaseName]
INTO #QueriesRunningSlowerThanNormal
FROM #SlowQueriesByIO
WHERE [% Time Deviation] - [% IO Deviation] > 20
ORDER BY [Impedance] DESC

SELECT DISTINCT
 ' EXEC sp_recompile ' + '''' + '[' + [DatabaseName] + '].'
 + dbo.ExtractSQLRoutineName([Parent Query]) + ''''
 AS recompileRoutineSQL
INTO #RecompileQuery
FROM #QueriesRunningSlowerThanNormal
WHERE [DatabaseName] NOT IN ('master', 'msdb', '')

DECLARE @RecompilationSQL NVARCHAR(MAX)
SET @RecompilationSQL = ''

SELECT @RecompilationSQL = @RecompilationSQL
 + recompileRoutineSQL + CHAR(10)
FROM #RecompileQuery
WHERE recompileRoutineSQL IS NOT NULL

DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@RecompilationSQL))
BEGIN
 PRINT SUBSTRING(@RecompilationSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

Calculate
Impedance

D

Build
recompilation SQL

E

Amalgamate
recompilation SQL

F

DebugG
www.it-ebooks.info

http://www.it-ebooks.info/

263Recompiling slow routines
PRINT SUBSTRING(@RecompilationSQL, @StartOffset, @Length)

EXECUTE sp_executesql @RecompilationSQL

DROP TABLE #SlowQueries
DROP TABLE #SlowQueriesByIO
DROP TABLE #QueriesRunningSlowerThanNormal
DROP TABLE #RecompileQuery

In this script, we look only at queries that are slower than normal based on the
_worker_time columns B. To determine whether a query is running slower than nor-
mal, we need to calculate the average duration of the query and compare it to its last
run value, adjusted for the amount of data it has processed C. The data is sorted to
show the TOP 100 queries running slower than normal, by Impedance; this is a reflec-
tion of Time Deviation taking into account IO Deviation D.

 The routines that are running slower than normal are stored in the tempo-
rary table named #QueriesRunningSlowerThanNormal. The name of the routines
to recompile is extracted by calling the CLR function dbo.ExtractSQLRoutine-
Name, passing it the Parent Query as input. The routine name is prepended with
the text “EXEC sp_recompile” E. All the wrapped-up routine names are concate-
nated, and the result is stored in the variable @RecompilationSQL F. The con-
tent of the variable @RecompilationSQL is also displayed for debugging purposes,
via the PRINT command G. This variable is then used as input to the system
stored procedure sp_executesql. Running this executes the text and marks any
routines that are running slower than normal to be recompiled when they are
next run H.

 The script ignores any routines that are in the master or msdb system database or
queries implemented as native SQL (resulting in a blank database name). It’s possible
to amend the script to include only those databases that you’re interested in, by
changing the line

WHERE [DatabaseName] NOT IN ('master', 'msdb', '')

to

WHERE [DatabaseName] IN ('ReplaceWithTheNameOfYourDatabaseHere')

If many of the queries to be recompiled have a large impedance value, but their abso-
lute time using the CPU is relatively small, it might be sensible to include only queries
that have a duration above a certain threshold. You can achieve this by adding a filter

Recompilation note
You should note that recompilation can cause a spike in CPU usage and create
compilation locks. But you should balance this against the advantages recompila-
tion will give, because the routines identified here are targeted based on their
known recent poor performance.

RunH
www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 10 The self-healing database
to the WHERE clause of the first query in listing 10.2, for example, to include queries
where their last run exceeded five seconds on the CPU:

AND qs.last_worker_time > 5000000

Having looked at how you can automatically recompile routines that are running
slower than normal, let’s now examine another script to automatically improve query
performance, by removing the fragmentation from indexes.

10.3 Automatically rebuild and reorganize indexes
Fragmentation relates to index entries that are out of sequence. So for queries that
access data sequentially, typically index scans, you’ll need to do additional work to
retrieve the index’s data. This additional work can reflect itself in longer-running que-
ries, with potentially more blocking and client timeouts. Where possible, remove any
fragmentation, so that you don’t perform any unnecessary work.

We discussed fragmentation fully in chapter 3, in section 3.6, “Fragmented indexes.” A
script was presented to identify the most-fragmented indexes.

 Let’s discuss how this script can be extended to automatically remove or reduce
the impact of this fragmentation, resulting in better-performing queries, especially
range-based ones.

10.3.1 Rebuilding and reorganizing fragmented indexes

The script I use to automatically rebuild or reorganize indexes is shown in the follow-
ing listing. This script is an extension of the one given in chapter 3, in section 3.6,
which identified the most-fragmented indexes.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

CREATE TABLE #FragmentedIndexes(
 DatabaseName SYSNAME
 , SchemaName SYSNAME
 , TableName SYSNAME
 , IndexName SYSNAME
 , [Fragmentation%] FLOAT)

Determining the degree of fragmentation can take a long time
Please be aware the DMV used to obtain the fragmentation details (sys.dm_db_
index_physical_stats) can take a long time to run. You should balance this time
against the time it would take just to rebuild or organize the indexes without
inspecting them for their degree of fragmentation. On an Enterprise-level system
with 600 indexes, some containing billions of rows, querying the DMV can take
several hours to complete.

Listing 10.3 Rebuild/reorganize for a given database

Create
table

B

www.it-ebooks.info

http://www.it-ebooks.info/

265Automatically rebuild and reorganize indexes
INSERT INTO #FragmentedIndexes
SELECT
 DB_NAME(DB_ID()) AS DatabaseName
 , ss.name AS SchemaName
 , OBJECT_NAME (s.object_id) AS TableName
 , i.name AS IndexName
 , s.avg_fragmentation_in_percent AS [Fragmentation%]
FROM sys.dm_db_index_physical_stats(db_id(),NULL, NULL, NULL, 'SAMPLED') s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.schemas ss ON ss.[schema_id] = o.[schema_id]
WHERE s.database_id = DB_ID()
 AND i.index_id != 0
 AND s.record_count > 0
 AND o.is_ms_shipped = 0

DECLARE @RebuildIndexesSQL NVARCHAR(MAX)
SET @RebuildIndexesSQL = ''

SELECT
@RebuildIndexesSQL = @RebuildIndexesSQL +
CASE
 WHEN [Fragmentation%] > 30
 THEN CHAR(10) + 'ALTER INDEX ' + QUOTENAME(IndexName) + ' ON '
 + QUOTENAME(SchemaName) + '.'
 + QUOTENAME(TableName) + ' REBUILD;'
 WHEN [Fragmentation%] > 10
 THEN CHAR(10) + 'ALTER INDEX ' + QUOTENAME(IndexName) + ' ON '
 + QUOTENAME(SchemaName) + '.'
 + QUOTENAME(TableName) + ' REORGANIZE;'
 END
FROM #FragmentedIndexes
WHERE [Fragmentation%] > 10

DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@RebuildIndexesSQL))
BEGIN
 PRINT SUBSTRING(@RebuildIndexesSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

PRINT SUBSTRING(@RebuildIndexesSQL, @StartOffset, @Length)

EXECUTE sp_executesql @RebuildIndexesSQL

DROP TABLE #FragmentedIndexes

In the listing we create a temporary table named #FragmentedIndexes to hold the
details of the fragmented indexes B. The DMV sys.dm_db_index_physical_stats is
queried to determine the degree of fragmentation. We ignore heaps C and include
indexes that have at least one row of data D. In addition, we’re interested only in
indexes that relate to user tables E.

Ignore heapsC

Only indexes
with dataD

User tables onlyE

Build rebuild/
reorg SQLF

DebugG

Execute SQLH
www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 10 The self-healing database
 The rebuild or reorganize SQL commands are created from a combination of
index name, schema name, and table name; all these details are given in the tempo-
rary table. The name of the index to rebuild or reorganize is prepended with the
appropriate ALTER INDEX keywords and appended with a REBUILD or REORGANIZE
keyword, depending on the degree of fragmentation F.

NOTE Only indexes where the degree of fragmentation is greater than 10%
are included for further processing. Indexes that are fragmented by more
than 30% will be rebuilt, whereas indexes that are fragmented by between
10% and 30% will be reorganized.

All the wrapped-up ALTER INDEX statements are concatenated and the result stored
in the variable @RebuildIndexesSQL. The content of the variable @RebuildIndex-
esSQL is also displayed for debugging purposes, via the PRINT command G. This vari-
able is then used as input to the system stored procedure sp_executesql H; running
this executes the text and rebuilds or reorganizes the indexes.

 It’s also possible to have a script that performs this rebuilding/reorganization on
each database on the server. This script is given in the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

CREATE TABLE #FragmentedIndexes(
 DatabaseName SYSNAME
 , SchemaName SYSNAME
 , TableName SYSNAME
 , IndexName SYSNAME
 , [Fragmentation%] FLOAT)

EXEC sp_MSForEachDB 'USE [?];

INSERT INTO #FragmentedIndexes
SELECT
 DB_NAME(DB_ID()) AS DatabaseName
 , ss.name AS SchemaName
 , OBJECT_NAME (s.object_id) AS TableName
 , i.name AS IndexName
 , s.avg_fragmentation_in_percent AS [Fragmentation%]
FROM sys.dm_db_index_physical_stats(db_id(),NULL, NULL, NULL,
 ''SAMPLED'') s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON s.object_id = o.object_id
INNER JOIN sys.schemas ss ON ss.[schema_id] = o.[schema_id]
WHERE s.database_id = DB_ID()
 AND i.index_id != 0
 AND s.record_count > 0
 AND o.is_ms_shipped = 0
;'

DECLARE @RebuildIndexesSQL NVARCHAR(MAX)
SET @RebuildIndexesSQL = ''

Listing 10.4 Rebuild/reorganize for all databases on a given server

Create
table

B

Loop around
all databases

C

Ignore
heaps

d

Only indexes
with datae

User tables
onlyf
www.it-ebooks.info

http://www.it-ebooks.info/

267Automatically rebuild and reorganize indexes
SELECT
@RebuildIndexesSQL = @RebuildIndexesSQL +
CASE
WHEN [Fragmentation%] > 30
 THEN CHAR(10) + 'ALTER INDEX ' + QUOTENAME(IndexName) + ' ON '
 + QUOTENAME(DatabaseName) + '.'+ QUOTENAME(SchemaName) + '.'
 + QUOTENAME(TableName) + ' REBUILD;'
WHEN [Fragmentation%] > 10
 THEN CHAR(10) + 'ALTER INDEX ' + QUOTENAME(IndexName) + ' ON '
 + QUOTENAME(DatabaseName) + '.'+ QUOTENAME(SchemaName) + '.'
 + QUOTENAME(TableName) + ' REORGANIZE;'
END
FROM #FragmentedIndexes
WHERE [Fragmentation%] > 10

DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@RebuildIndexesSQL))
BEGIN
 PRINT SUBSTRING(@RebuildIndexesSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

PRINT SUBSTRING(@RebuildIndexesSQL, @StartOffset, @Length)

EXECUTE sp_executesql @RebuildIndexesSQL

DROP TABLE #FragmentedIndexes

This script is essentially the same as that given in listing 10.3, but it queries all the data-
bases on the server. In the listing a temporary table named #FragmentedIndexes is
created to hold the details of the fragmented indexes B. The system stored proce-
dure sp_MSForEachDB C is executed, which allows you to run the contained script on
each of the databases in the server in turn. In the contained script we use the DMV
sys.dm_db_index_physical_stats to determine the degree of fragmentation. In the
script we ignore heaps D and include indexes that have at least one row of data E.
Also, we’re interested only in indexes that relate to user tables F.

 The rebuild or reorganize SQL commands are created from a combination of
index name, schema name, and table name; all these details are given in the tempo-
rary table. The name of the index to rebuild or reorganize is prepended with the
appropriate ALTER INDEX keywords and appended with a REBUILD or REORGANIZE
keyword, depending on the degree of fragmentation G. The content of the variable
@RebuildIndexesSQL is also displayed for debugging purposes, via the PRINT com-
mand H. This variable is then used as input to the system stored procedure
sp_executesql I; running this executes the text and rebuilds or reorganizes the
indexes.

 It’s possible to amend the script to include only the databases, schemas, or indexes
that you’re interested in by adding a WHERE clause to the query that dynamically

Build rebuild/
reorg SQLG

DebugH

Execute
SQLI
www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 10 The self-healing database
builds up the rebuild/reorganization SQL. Alternatively you could provide relevant
parameters to the sys.dm_db_index_physical_stats DMV.

 It should be possible to extend this script to examine the degree of page splits,
fragmentation, and fill factor (using your knowledge of the profile of any index modi-
fications) to produce a more appropriate fill factor for the index, resulting in fewer
page splits and less fragmentation.

 One of the benefits of performing a rebuild is that because the whole index is
rebuilt, it results in the statistics for the index being optimal, because it has a 100%
sample. Be sure not to run an UPDATE STATISTICS command on any indexes immedi-
ately after an index rebuild; otherwise you might reduce the effectiveness of the
index’s statistics. This leads nicely to our next script, concerning the intelligent updat-
ing of an index’s statistics.

10.4 Intelligently update statistics
As discussed in chapter 3, section 3.10, “Your statistics,” maintaining up-to-date statis-
tics is of vital importance if you want your queries to run optimally. Having up-to-date
statistics allows SQL Server to create a query plan with an optimal data access mecha-
nism, for example, using an index appropriately.

 The statistics relate to indexes, but because a table can have many indexes, it’s com-
mon to talk about the statistics relating to the table. Often the UPDATE STATISTICS
command is run against a given table, updating all the indexes on the table, even if data
in the index hasn’t changed. The script given in listing 10.5 works more efficiently
because it identifies and updates the statistics of only those indexes that have changed.
This is a more targeted and intelligent approach.

NOTE The scripts given here don’t use DMVs, but they do use related system
tables. Owing to the importance of statistics for the selection of an optimal
access mechanism needed to create a query plan, I decided to include these
scripts in this chapter.

Typically, SQL Server will update statistics when 20% of the underlying data changes.
Usually this data relates to an index. If the statistics change, any cached plan that
uses the statistics (for example, via an index) is recompiled to take advantage of the
new statistics, which in turn may lead to a more optimal method of data access and a
faster query.

 For very large tables in particular, waiting for the underlying data to change by
20% might take too long. For example, if 1% of the data changes each day, it might
take a month before the statistics are automatically updated, resulting in suboptimal
execution plans being used and slower-performing queries. I’ve experienced a great
many queries that have been running slowly because of out-of-date statistics, some of
which have run for an hour or more, but these run in seconds when the statistics are
updated. With this in mind, it makes sense to consider updating the statistics on a
more regular basis.
www.it-ebooks.info

http://www.it-ebooks.info/

269Intelligently update statistics
10.4.1 Simple intelligent statistics update

Statistics contain information about the distribution and density of data values. For
larger tables in particular, it can take a long time to obtain detailed statistics, so a
sample of data is typically used to create the statistics rather than an examination of
all the data.

 Typically, the default update statistics, which occur when 20% of the underlying
data changes, use the sampling percentage when update statistics was last run. In our
script, we can be more intelligent, creating a sampling algorithm based on the num-
ber of rows in the underlying index.

 The script we use to automatically update the statistics intelligently is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 ss.name AS SchemaName
 , st.name AS TableName
 , si.name AS IndexName
 , si.type_desc AS IndexType
 , STATS_DATE(si.object_id,si.index_id) AS StatsLastTaken
 , ssi.rowcnt
 , ssi.rowmodctr
INTO #IndexUsage
FROM sys.indexes si
INNER JOIN sys.sysindexes ssi ON si.object_id = ssi.id
 AND si.name = ssi.name
INNER JOIN sys.tables st ON st.[object_id] = si.[object_id]
INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
WHERE st.is_ms_shipped = 0
 AND si.index_id != 0
 AND ssi.rowcnt > 100
 AND ssi.rowmodctr > 0

DECLARE @UpdateStatisticsSQL NVARCHAR(MAX)
SET @UpdateStatisticsSQL = ''

SELECT
 @UpdateStatisticsSQL = @UpdateStatisticsSQL
 + CHAR(10) + 'UPDATE STATISTICS '
 + QUOTENAME(SchemaName) + '.' + QUOTENAME(TableName)
 + ' ' + QUOTENAME(IndexName) + ' WITH SAMPLE '
 + CASE
 WHEN rowcnt < 500000 THEN '100 PERCENT'
 WHEN rowcnt < 1000000 THEN '50 PERCENT'
 WHEN rowcnt < 5000000 THEN '25 PERCENT'
 WHEN rowcnt < 10000000 THEN '10 PERCENT'
 WHEN rowcnt < 50000000 THEN '2 PERCENT'
 WHEN rowcnt < 100000000 THEN '1 PERCENT'
 ELSE '3000000 ROWS '
 END
 + '-- ' + CAST(rowcnt AS VARCHAR(22)) + ' rows'
FROM #IndexUsage

Listing 10.5 Intelligently update statistics—simple version

Select indexes
to updateB

User
indexes
only

C

Ignore
heapsD

Indexes with 100
or more rowsE

Indexes
with some
changed
dataF

Build SQL to
update statisticsG
www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 10 The self-healing database
DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@UpdateStatisticsSQL))
BEGIN
 PRINT SUBSTRING(@UpdateStatisticsSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

PRINT SUBSTRING(@UpdateStatisticsSQL, @StartOffset, @Length)

EXECUTE sp_executesql @UpdateStatisticsSQL

DROP TABLE #IndexUsage

In the listing, four system tables are involved in intelligently updating statistics. A brief
description of each is given in table 10.1.

The script joins the sys.indexes system view with the sys.sysindexes system view based
on their common name and id columns. Joins to the sys.table and sys.schema sys-
tem tables are provided to obtain the name of the schema and table the index’s sta-
tistics relate to. This is required when you want to update the relevant statistics.

 We capture the name of the schema, table, and index B into a temporary table
named #IndexUsage. We also record the number of rows in the index together with
the number of modifications since update statistics was last applied (this date itself is
also recorded in the column StatsLastTaken). This information could prove useful in
any subsequent debugging, analysis, or further filtering.

 We filter on the joined system views based on various criteria; specifically, we’re
concerned only with indexes that relate to user tables C as opposed to system tables.
Additionally, we’re concerned only with clustered and nonclustered indexes, ignoring
heaps D. We want only indexes that have at least 100 rows E, and finally, we’re con-
cerned only with indexes whose data has changed since the last time update statistics
was run on the index F. It’s possible to amend this section of the script so that we
update only the statistics of indexes that have changed by a given number or percent-
age of rows.

Table 10.1 Tables used for intelligently updating statistics

Tables Description

sys.indexes Contains details for each index, for example, name

sys.sysindexes Contains details for each index and table, for example, row count,
number of row changes since statistics last updated

sys.tables Contains table information, for example, name

sys.schemas Contains details of schema objects, for example, name

DebugH

Execute
SQLI
www.it-ebooks.info

http://www.it-ebooks.info/

271Intelligently update statistics
 The name of the index that we want to update the statistics on is prepended with
the name of the schema and table, together with the keywords UPDATE STATISTICS.
The resultant commands are concatenated, and the result is stored in the variable
@UpdateStatisticsSQL G. The content of the variable @UpdateStatisticsSQL is dis-
played for debugging purposes, via the PRINT command H. This variable is then used
as input to the system stored procedure sp_executesql; running this executes the text
and updates the statistics on the relevant indexes I.

 The algorithm used to determine the percentage of rows to sample is given in
table 10.2.

The algorithm is weighted such that smaller indexes have a higher sampling per-
centage. This seems appropriate because you’re more likely to miss an important
data value if you have a lower sampling percentage in a small index. Similarly,
you’re more likely to repeat a data value if you have a high sampling percentage on
a large index.

 You can alter this algorithm to suit your needs. These values have proved helpful
on some of the systems I’ve used (that have 600 indexes, some with row counts in
excess of 11 billion). Ultimately, the sampling percentages should reflect the variabil-
ity in the underlying column data values.

 It’s possible to limit the number of indexes that will have their statistics updated by
filtering, out or in, by adding a WHERE condition. It’s also possible to filter out or in
by database name, schema name, table name, index name, the date when the statistics
were last updated, or the number of rows changed.

 Ideally, you should be able to run as many statistics updates as possible, weighted
by the row counts for the different indexes, within a given time period. This is the idea
behind the next script.

Table 10.2 Sampling strategy used for intelligently updating statistics

Rows in index Sampling percentage/row count

Up to 500,000 100 percent (up to 500,000 rows sampled)

Up to 1,000,000 50 percent (up to 500,000 rows sampled)

Up to 5,000,000 25 percent (up to 1,250,000 rows sampled)

Up to 10,000,000 10 percent (up to 1,000,000 rows sampled)

Up to 50,000,000 2 percent (up to 1,000,000 rows sampled)

Up to 100,000,000 1 percent (up to 1,000,000 rows sampled)

Over 100,000,000 3,000,000 rows
www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 10 The self-healing database
10.4.2 Time-based intelligent statistics update

Updating an index’s statistics takes time. Having provided an algorithm to obtain a
sampling of rows, it makes sense to provide a script that adjusts the sampling to fit
a given time frame; for example, update as many statistics as possible in 30 min-
utes. The script we use to automatically update the statistics intelligently, using a
time-based approach, is shown next.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

IF EXISTS
 (SELECT 1
 FROM sys.indexes si
 INNER JOIN sys.sysindexes ssi ON si.object_id = ssi.id
 AND si.name = ssi.name
 INNER JOIN sys.tables st ON st.[object_id] = si.[object_id]
 INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
 WHERE st.is_ms_shipped = 0
 AND si.index_id != 0
 AND ssi.rowcnt > 100
 AND ssi.rowmodctr > 0)
BEGIN

DECLARE @StatsMarker NVARCHAR(2000)
DECLARE @SamplingComplete BIT
DECLARE @RowsToBenchMark BIGINT
SET @RowsToBenchMark = 500
SET @SamplingComplete = 0

DECLARE @TotalStatsTime BIGINT
DECLARE @StartTime DATETIME
DECLARE @TimePerRow FLOAT

WHILE (@SamplingComplete = 0)
BEGIN
 SELECT TOP 1 @StatsMarker = 'UPDATE STATISTICS '
 + QUOTENAME(ss.name) + '.' + QUOTENAME(st.name)
 + ' ' + QUOTENAME(si.name) + ' WITH SAMPLE '
 + CAST(@RowsToBenchMark AS VARCHAR(22)) + ' ROWS'
 FROM sys.indexes si
 INNER JOIN sys.sysindexes ssi ON si.object_id = ssi.id
 AND si.name = ssi.name
 INNER JOIN sys.tables st ON st.[object_id] = si.[object_id]
 INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
 WHERE st.is_ms_shipped = 0 -- User tables only
 AND si.index_id != 0 -- ignore heaps
 AND ssi.rowcnt > @RowsToBenchMark
 ORDER BY ssi.rowcnt

 IF @@ROWCOUNT > 0
 BEGIN
 PRINT 'Testing sampling time with: ' + @StatsMarker

 SET @StartTime = GETDATE()

Listing 10.6 Intelligently update statistics—time-based version

Do stats need
updating

B

How long to
update one row

C

www.it-ebooks.info

http://www.it-ebooks.info/

273Intelligently update statistics
 EXECUTE sp_executesql @StatsMarker

 SET @TotalStatsTime = DATEDIFF(SECOND, @StartTime, GETDATE())
 PRINT '@TotalStatsTime: ' + CAST(@TotalStatsTime AS VARCHAR(22))

 IF (@TotalStatsTime > 5)
 BEGIN
 SET @TimePerRow = @TotalStatsTime /
 (@RowsToBenchMark * 1.0)
 PRINT @TimePerRow

 SET @SamplingComplete = 1
 END
 ELSE
 SET @RowsToBenchMark = @RowsToBenchMark * 10
 END
 ELSE
 BEGIN
 DECLARE @ErrorMsg VARCHAR(200)
 SET @ErrorMsg = 'No indexes found with @RowsToBenchMark > '
 + CAST(@RowsToBenchMark AS VARCHAR(22))
 RAISERROR(@ErrorMsg, 16, 1)
 RETURN
 END
END

DECLARE @RowsToSample BIGINT
SET @RowsToSample = 0

SELECT
 ss.name AS SchemaName
 , st.name AS TableName
 , si.name AS IndexName
 , si.type_desc AS IndexType
 , STATS_DATE(si.object_id,si.index_id) AS StatsLastTaken
 , ssi.rowcnt
 , ssi.rowmodctr
 , @RowsToSample AS RowsToSample
INTO #IndexUsage
FROM sys.indexes si
INNER JOIN sys.sysindexes ssi ON si.object_id = ssi.id
 AND si.name = ssi.name
INNER JOIN sys.tables st ON st.[object_id] = si.[object_id]
INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
WHERE st.is_ms_shipped = 0
 AND si.index_id != 0
 AND ssi.rowcnt > 100
 AND ssi.rowmodctr > 0

DECLARE @MaxSamplingTimeInSeconds INT
SET @MaxSamplingTimeInSeconds = 600 -- 10 mins
DECLARE @WorkIsWithinTimeLimit BIT
SET @WorkIsWithinTimeLimit = 0
DECLARE @TotalTimeForAllStats INT
DECLARE @ReduceFraction FLOAT
SET @ReduceFraction = 1.0
DECLARE @ReduceFractionSmall FLOAT
SET @ReduceFractionSmall = 1.0

Want at least
5 sec of statisticsD

Calculate stats
time per rowE

Get a bigger
sample

F

Not enough rows
to sample, exitG

Get indexes with
stats to update

H

www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 10 The self-healing database
UPDATE #IndexUsage
SET RowsToSample =
 CASE
 WHEN rowcnt < 100000000 THEN rowcnt
 ELSE 3000000
 END

WHILE (@WorkIsWithinTimeLimit = 0)
BEGIN

 UPDATE #IndexUsage
 SET RowsToSample =
 CASE
 WHEN rowcnt < 500000 THEN rowcnt * @ReduceFractionSmall
 WHEN rowcnt < 1000000 THEN rowcnt / 2 * @ReduceFractionSmall
 WHEN rowcnt < 5000000 THEN rowcnt / 4 * @ReduceFractionSmall
 WHEN rowcnt < 10000000 THEN rowcnt / 10 * @ReduceFraction
 WHEN rowcnt < 50000000 THEN rowcnt / 50 * @ReduceFraction
 WHEN rowcnt < 100000000 THEN rowcnt / 100 * @ReduceFraction
 ELSE 3000000 * @ReduceFraction
 END

 SELECT @TotalTimeForAllStats = SUM(RowsToSample) * @TimePerRow
 FROM #IndexUsage

 PRINT '@TotalTimeForAllStats: '
 + CAST(@TotalTimeForAllStats AS VARCHAR(22))

 IF (@TotalTimeForAllStats < @MaxSamplingTimeInSeconds)
 SET @WorkIsWithinTimeLimit = 1
 ELSE
 BEGIN
 SET @ReduceFraction = @ReduceFraction - 0.01
 SET @ReduceFractionSmall = @ReduceFractionSmall - 0.001
 END
END

DECLARE @UpdateStatisticsSQL NVARCHAR(MAX)
SET @UpdateStatisticsSQL = ''

SELECT
 @UpdateStatisticsSQL = @UpdateStatisticsSQL
 + CHAR(10) + 'UPDATE STATISTICS ' + QUOTENAME(SchemaName)
 + '.' + QUOTENAME(TableName)
 + ' ' + QUOTENAME(IndexName) + ' WITH SAMPLE '
 + CAST(RowsToSample AS VARCHAR(22)) + ' ROWS '
FROM #IndexUsage

DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@UpdateStatisticsSQL))
BEGIN
 PRINT SUBSTRING(@UpdateStatisticsSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

Apply weighting
factor

I

Calc total time for
stats update J

Sampling time
exceeded

1)

Decrease
rows to
sample1 !

Build SQL to
update statistics

1 @

Debug1 #
www.it-ebooks.info

http://www.it-ebooks.info/

275Intelligently update statistics
PRINT SUBSTRING(@UpdateStatisticsSQL, @StartOffset, @Length)

EXECUTE sp_executesql @UpdateStatisticsSQL

DROP TABLE #IndexUsage

END

This script uses the same tables and initial sample weighted algorithm as the previous
intelligently update statistics script. The big difference is that this script will adjust the
number of rows sampled to complete within a given time interval.

 The script first determines if there are any indexes that need to have their statistics
updated B; if rows exist, it proceeds. This ensures you don’t do any unnecessary pro-
cessing.

 The script next calculates how long it takes to update the statistics for a known
number of rows C. We want statistics that take at least five seconds to calculate for our
subsequent calculations to be meaningful D. If our sample completes within five sec-
onds, we increase the sample size F and inspect an index that has more rows to sam-
ple. If we can’t find an index of sufficient size, an error message is set, a RAISERROR is
issued G, and the routine is exited.

 If we can obtain a statistics sample that takes at least five seconds to calculate, we
then calculate how long it takes to update the statistics for a given row E. This is
important in determining how long it will take to update all the rows on the indexes
that need to have their statistics updated.

 We next get the indexes that need to have their statistics updated H and apply the
intelligent sampling weighting based on the number of rows the index contains I.
From this we can determine how long updating the statistics should take J. If it
exceeds the time we have available , we reduce the sampling size, again with an
intelligent sampling weighting based on the number of rows the index contains ,
and we again estimate how long updating the statistics of this reduced number of rows
will take. This process is repeated until the rows can be sampled within the time
period allowed.

 In the last part of the script, the names of the indexes that you want to update
the statistics on are prepended with the name of the schema and table, together
with the keywords UPDATE STATISTICS . The resultant commands are concate-
nated and the result stored in the variable @UpdateStatisticsSQL. The content of
the variable @UpdateStatisticsSQL is also displayed for debugging purposes, via the
PRINT command . This variable is then used as input to the system stored proce-
dure sp_executesql; running this executes the text and updates the statistics on the
relevant indexes .

NOTE This method assumes the performance of the system is the same when
the updates are done as when the sample was taken. If the system is busier
when the index’s statistics are updated, then this will result in a longer time
interval than has been estimated.

Execute
SQL1 $

1)
1 !

1 @

1 #

1 $
www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 10 The self-healing database
The smaller indexes have a smaller reduction factor; this is to ensure that we’ll
have a more representative range of data values in the smaller row sets. The WHILE
loop exits when the number of rows to sample can be achieved within the speci-
fied time interval.

 It’s possible to amend the script to include only the databases, schemas, or indexes
that you’re interested in by adding a WHERE clause to the query that dynamically
builds up the UPDATE STATISTICS SQL.

 Having discussed intelligent statistics, let’s now discuss how you can automatically
update the statistics used by a given routine.

10.5 Automatically updating a routine’s statistics
If you have SQL queries that run at given times or in a certain sequence, it makes sense
to ensure the statistics the queries use are up to date before the queries are run. You
can schedule an update statistics job to run automatically to update a routine’s statis-
tics before the routine itself runs. This will allow the queries to take advantage of the
latest data relating to the distribution and density of column values.

 The following script allows you to run a given batch of SQL queries and records the
indexes that are accessed. It then creates the appropriate UPDATE STATISTICS state-
ment with a weighted sampling percentage applied. Instead of running a batch of SQL
queries, it’s also possible to record the indexes that are accessed during a given time
period, by making use of the WAITFOR DELAY keywords. In this example, the time
period is 10 minutes; you may want to modify this interval to meet your needs.

 Having previously run this script to obtain details of the indexes used by a given
routine, or for a given time period, you should run this dynamic SQL before the nor-
mal run of your batch. In the script it’s run immediately afterward for illustrative pur-
poses only.

 The script we use to automatically update the statistics intelligently, using a time-
interval approach, is shown in the following listing.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 SchemaName = ss.name
 , TableName = st.name
 , IndexName = si.name
 , si.type_desc AS IndexType
 , user_updates = ISNULL(ius.user_updates, 0)
 , user_seeks = ISNULL(ius.user_seeks, 0)
 , user_scans = ISNULL(ius.user_scans, 0)
 , user_lookups = ISNULL(ius.user_lookups, 0)
 , ssi.rowcnt
 , ssi.rowmodctr
INTO #IndexStatsPre
FROM sys.dm_db_index_usage_stats ius

Listing 10.7 Update statistics used by a SQL routine or a time interval

Get index usage
counter values,
pre-workB
www.it-ebooks.info

http://www.it-ebooks.info/

277Automatically updating a routine’s statistics
RIGHT OUTER JOIN sys.indexes si ON ius.[object_id] = si.[object_id]
 AND ius.index_id = si.index_id
INNER JOIN sys.sysindexes ssi ON si.object_id = ssi.id
 AND si.name = ssi.name
INNER JOIN sys.tables st ON st.[object_id] = si.[object_id]
INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
WHERE ius.database_id = DB_ID()
 AND st.is_ms_shipped = 0

WAITFOR DELAY '00:10:00'

SELECT
 SchemaName = ss.name
 , TableName = st.name
 , IndexName = si.name
 , si.type_desc AS IndexType
 , user_updates = ISNULL(ius.user_updates, 0)
 , user_seeks = ISNULL(ius.user_seeks, 0)
 , user_scans = ISNULL(ius.user_scans, 0)
 , user_lookups = ISNULL(ius.user_lookups, 0)
 , ssi.rowcnt
 , ssi.rowmodctr
INTO #IndexStatsPost
FROM sys.dm_db_index_usage_stats ius
RIGHT OUTER JOIN sys.indexes si ON ius.[object_id] = si.[object_id]
 AND ius.index_id = si.index_id
INNER JOIN sys.sysindexes ssi ON si.object_id = ssi.id
 AND si.name = ssi.name
INNER JOIN sys.tables st ON st.[object_id] = si.[object_id]
INNER JOIN sys.schemas ss ON ss.[schema_id] = st.[schema_id]
WHERE ius.database_id = DB_ID()
 AND st.is_ms_shipped = 0

SELECT
 po.[SchemaName]
 , po.[TableName]
 , po.[IndexName]
 , po.rowcnt
 , po.[IndexType]
 , [User Updates] = po.user_updates - ISNULL(pr.user_updates, 0)
 , [User Seeks] = po.user_seeks - ISNULL(pr.user_seeks, 0)
 , [User Scans] = po.user_scans - ISNULL(pr.user_scans, 0)
 , [User Lookups] = po.user_lookups - ISNULL(pr.user_lookups, 0)
 , [Rows Inserted] = po.rowcnt - ISNULL(pr.rowcnt, 0)
 , [Updates I/U/D] = po.rowmodctr - ISNULL(pr.rowmodctr, 0)
INTO #IndexUsage
FROM #IndexStatsPost po
LEFT OUTER JOIN #IndexStatsPre pr ON pr.SchemaName = po.SchemaName
 AND pr.TableName = po.TableName
 AND pr.IndexName = po.IndexName
 AND pr.IndexType = po.IndexType
WHERE ISNULL(pr.user_updates, 0) != po.user_updates
 OR ISNULL(pr.user_seeks, 0) != po.user_seeks
 OR ISNULL(pr.user_scans, 0) != po.user_scans
 OR ISNULL(pr.user_lookups, 0) != po.user_lookups

Run SQL batch or wait
for time interval

C

Get index usage counter
values, post-workD

Determine which
counters have changedE
www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 10 The self-healing database
DECLARE @UpdateStatisticsSQL NVARCHAR(MAX)
SET @UpdateStatisticsSQL = ''

SELECT
 @UpdateStatisticsSQL = @UpdateStatisticsSQL
 + CHAR(10) + 'UPDATE STATISTICS ' + QUOTENAME(SchemaName)
 + '.' + QUOTENAME(TableName)
 + ' ' + QUOTENAME(IndexName) + ' WITH SAMPLE '
 + CASE
 WHEN rowcnt < 500000 THEN '100 PERCENT'
 WHEN rowcnt < 1000000 THEN '50 PERCENT'
 WHEN rowcnt < 5000000 THEN '25 PERCENT'
 WHEN rowcnt < 10000000 THEN '10 PERCENT'
 WHEN rowcnt < 50000000 THEN '2 PERCENT'
 WHEN rowcnt < 100000000 THEN '1 PERCENT'
 ELSE '3000000 ROWS '
 END
FROM #IndexUsage
WHERE [User Seeks] != 0 OR [User Scans] != 0 OR [User Lookups] != 0

DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@UpdateStatisticsSQL))
BEGIN
 PRINT SUBSTRING(@UpdateStatisticsSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

PRINT SUBSTRING(@UpdateStatisticsSQL, @StartOffset, @Length)

EXECUTE sp_executesql @UpdateStatisticsSQL

DROP TABLE #IndexStatsPre
DROP TABLE #IndexStatsPost
DROP TABLE #IndexUsage

This script is an extension of one given in chapter 3, section 3.7, “Indexes used by a
given routine.”

 First, we take a snapshot of the current values of the relevant index metrics and
store them in a temporary table named #IndexStatsPre B. Then we run the query we
want to obtain index details about, or, as in our script example, we wait for a given
time interval to pass to determine which indexes have changed C. Next, we take
another snapshot and store the results into a table named #IndexStatsPost D. We
compare the two snapshots E to determine which indexes have changed during the
running of the query under investigation (or a time period has elapsed).

 Details of the indexes that are used by a given routine, or during a given time
interval, are stored in a temporary table named #IndexUsage. The UPDATE STATISTICS
command is prepended to the name of the schema, the name of the table, and the
name of the index. This is then appended with a sample percentage that’s based on
the number of rows in the index. All these statements are concatenated and the
result stored in the variable @UpdateStatisticsSQL F. The content of the variable

Build UPDATE
STATISTICS SQL

F

DebugG

Run SQLH
www.it-ebooks.info

http://www.it-ebooks.info/

279Automatically implement missing indexes
@UpdateStatisticsSQL is also displayed for debugging purposes, via the PRINT
command G. This variable is then used as input to the system stored procedure
sp_executesql H; running this executes the text and updates the statistics on the
given index with the predetermined sample size.

 It’s possible to amend the script to include only the databases, schemas, or indexes
that you’re interested in by adding a WHERE clause to the query that dynamically
builds up the UPDATE STATISTICS SQL.

 Having discussed the importance of ensuring an index’s statistics are up to date,
we’ll next discuss the problem of missing indexes and how they can be automatically
implemented.

10.6 Automatically implement missing indexes
Indexes and their associated statistics can have a dramatic effect on SQL query perfor-
mance. We fully discussed missing indexes in chapter 3, section 3.2, “Costly missing
indexes.” We also presented a script to identify the most-costly missing indexes.

 Here we’ll discuss how this script can be extended to automatically create the SQL
commands necessary to implement these missing indexes. Implementing these
indexes could have a significant effect on query performance.

10.6.1 Implementing missing indexes

The script we use to automatically implement missing indexes is shown in the follow-
ing listing. This script is an extension of the one given in chapter 3, section 3.2, which
identified the most-important missing indexes.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
 'CREATE NONCLUSTERED INDEX '
 + QUOTENAME('IX_AutoGenerated_'
 + REPLACE(REPLACE(CONVERT(VARCHAR(25), GETDATE(), 113)
 , ' ', '_'), ':', '_')
 + '_' + CAST(d.index_handle AS VARCHAR(22))
)
 + ' ON ' + d.[statement] + '('

Should you automatically implement missing indexes?
The missing indexes identified via the missing-index DMVs relate to specific SQL
queries that have run. Adding the missing indexes should improve the performance
of these specific queries, but they may also lead to slower updates and longer
transactions. Also, no attempt is made to amalgamate any related indexes. It
might be advantageous to implement the most important missing indexes auto-
matically, especially on data warehouse databases, but I’d advise you to review
fully all such indexes before automatically implementing them.

Listing 10.8 Automatically create any missing indexes

Build SQL for most-important
missing indexes

B

www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 10 The self-healing database
 + CASE
 WHEN d.equality_columns IS NULL THEN d.inequality_columns
 WHEN d.inequality_columns IS NULL THEN d.equality_columns
 ELSE d.equality_columns + ',' + d.inequality_columns
 END
 + ')'
 + CASE
 WHEN d.included_columns IS NOT NULL THEN
 ' INCLUDE (' + d.included_columns + ')'
 ELSE ''
 END AS MissingIndexSQL
 , ROUND(s.avg_total_user_cost * s.avg_user_impact
 * (s.user_seeks + s.user_scans),0) AS [Total Cost]
 , d.[statement] AS [Table Name]
 , d.equality_columns
 , d.inequality_columns
 , d.included_columns
INTO #MissingIndexes
FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s
 ON s.group_handle = g.index_group_handle
INNER JOIN sys.dm_db_missing_index_details d
 ON d.index_handle = g.index_handle
ORDER BY [Total Cost] DESC

DECLARE @MissingIndexesSQL NVARCHAR(MAX)
SET @MissingIndexesSQL = ''

SELECT
 @MissingIndexesSQL = @MissingIndexesSQL + MissingIndexSQL + CHAR(10)
FROM #MissingIndexes

DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@MissingIndexesSQL))
BEGIN
 PRINT SUBSTRING(@MissingIndexesSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

PRINT SUBSTRING(@MissingIndexesSQL, @StartOffset, @Length)

EXECUTE sp_executesql @MissingIndexesSQL

DROP TABLE #MissingIndexes

This script was largely discussed in chapter 3. We’ll discuss here only the changes that
allow the creation of the automation of the missing-indexes script.

 The first part of the script identifies the 20 most-important missing indexes. These
missing indexes are wrapped with SQL keywords that create a nonclustered index B.
The unique name of the index is created from a combination of a static piece of text
(IX_Autogenerated_), the date the script was run, and the index_handle of the miss-
ing index.

Amalgamate missing
indexes SQL

C

DebugD

Execute SQLE
www.it-ebooks.info

http://www.it-ebooks.info/

281Automatically disable or drop unused indexes
 The structure of the indexes is created from the columns identified by the
equality_columns and/or inequality_columns, together with any columns given by
the included_columns column. The results are stored in the temporary table named
#MissingIndexes.

 All the wrapped-up CREATE NONCLUSTERED INDEX statements are concate-
nated, and the result is stored in the variable @MissingIndexesSQL C. The con-
tent of the variable @MissingIndexesSQL is displayed for debugging purposes, via
the PRINT command D. This variable is then used as input to the system stored
procedure sp_executesql; running this executes the text and creates the missing
indexes E.

 It’s possible to amend the script to include only the databases, schemas, or indexes
that you’re interested in by adding a WHERE clause to the query that dynamically
builds the missing-indexes SQL.

 Having looked at implementing missing indexes, we’ll next discuss the diametri-
cally opposite functionality—automatic disabling or dropping of unused indexes.

10.7 Automatically disable or drop unused indexes
Perhaps the most important message from this section is that you should drop an
index only if you’re certain that it’s never used.

Indexes are often of paramount importance for the performance of SQL queries,
allowing the relevant data to be retrieved much quicker than scanning the underlying
table. But indexes can have a detrimental effect on updates (via UPDATE, DELETE, or
INSERT), because the index data may also need to be updated. This will add to the
query duration, length of transaction, and locks, leading to blocking and potential
timeouts for clients.

 Unused indexes force SQL Server to do unnecessary work. In addition to queries
taking longer to execute, administrative functions like backups and restores will take
longer to complete, and there’s also an additional cost associated with the storage of
unnecessary data. Where possible, you should remove any unused indexes.

 Costly unused indexes were discussed fully in chapter 3, section 3.3, “Unused
indexes.” A script was presented to identify the most-costly unused indexes.

Should you automatically disable or drop indexes?
I was unsure whether to include this script because of the uncertainty in determin-
ing whether an index is used or not. The DMVs record data accumulated since the
last reboot; if a query that uses a given index hasn’t been run yet, it will be reported
as unused and could be removed. But to ease my fears, the default option in the
script is to disable the index. This will remove the index and its data but keep its
definition tied to the underlying table, allowing it to be reinstated if it’s required.
Ensure that you test this functionality on your test systems. Only if you’re certain
that an index isn’t used should you drop it.
www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 10 The self-healing database
 Here we’ll discuss how you can extend this script to automatically create the SQL
commands to disable or drop these unused indexes. Disabling or removing these
indexes could have a significant effect on query performance.

10.7.1 Disabling or dropping unused indexes

The script we use to automatically disable or drop unused indexes is shown in the fol-
lowing listing. This script is an extension of the one given in chapter 3, section 3.3,
which identified the most-costly unused indexes.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , s.user_updates
 , s.system_seeks + s.system_scans + s.system_lookups
 AS [System usage]
INTO #TempUnusedIndexes
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE 1=2

EXEC sp_MSForEachDB 'USE [?];
INSERT INTO #TempUnusedIndexes
SELECT TOP 20
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , s.user_updates
 , s.system_seeks + s.system_scans + s.system_lookups
 AS [System usage]
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE s.database_id = DB_ID()
 AND OBJECTPROPERTY(s.[object_id], ''IsMsShipped'') = 0
 AND user_seeks = 0
 AND user_scans = 0
 AND user_lookups = 0
 AND i.name IS NOT NULL
ORDER BY user_updates DESC'

DECLARE @DisableOrDrop INT
SET @DisableOrDrop = 1

DECLARE @DisableIndexesSQL NVARCHAR(MAX)
SET @DisableIndexesSQL = ''

Listing 10.9 Automatically disable or drop unused indexes

Identify most-important
unused indexes

B

www.it-ebooks.info

http://www.it-ebooks.info/

283Automatically disable or drop unused indexes
SELECT
 @DisableIndexesSQL = @DisableIndexesSQL +
 CASE
 WHEN @DisableOrDrop = 1
 THEN CHAR(10) + 'ALTER INDEX ' + QUOTENAME(IndexName) + ' ON '
 + QUOTENAME(DatabaseName) + '.'+ QUOTENAME(SchemaName) + '.'
 + QUOTENAME(TableName) + ' DISABLE;'
 ELSE CHAR(10) + 'DROP INDEX ' + QUOTENAME(IndexName) + ' ON '
 + QUOTENAME(DatabaseName) + '.'+ QUOTENAME(SchemaName) + '.'
 + QUOTENAME(TableName)
 END
FROM #TempUnusedIndexes

DECLARE @StartOffset INT
DECLARE @Length INT
SET @StartOffset = 0
SET @Length = 4000

WHILE (@StartOffset < LEN(@DisableIndexesSQL))
BEGIN
 PRINT SUBSTRING(@DisableIndexesSQL, @StartOffset, @Length)
 SET @StartOffset = @StartOffset + @Length
END

PRINT SUBSTRING(@DisableIndexesSQL, @StartOffset, @Length)

EXECUTE sp_executesql @DisableIndexesSQL

DROP TABLE #TempUnusedIndexes

This script was largely discussed in chapter 3. We’ll discuss here only the changes that
allow the automation of disabling or dropping of the unused indexes script.

 The first part of the script identifies the 20 most-important unused indexes, across
all the databases on the server B. Details of these unused indexes are stored in the
temporary table named #TempUnusedIndexes. These unused indexes are concate-
nated C and wrapped with SQL keywords that will disable or drop the indexes D. The
contents of the variable @DisableOrDrop determine whether the indexes should be
disabled or dropped. By default the indexes will be disabled. If you change the value
of the variable @DisableOrDrop to a value other than 1, it will cause SQL to be built to
drop the indexes.

 The wrapped-up INDEX statements are concatenated and the result stored in the
variable @DisableIndexesSQL. The content of the variable @DisableIndexesSQL is
also displayed for debugging purposes, via the PRINT command E. This variable
is then used as input to the system stored procedure sp_executesql; running this
executes the text and disables or drops the unused indexes F.

 It’s possible to amend the script to include only the databases, schemas, or indexes
that you’re interested in by adding a WHERE clause to the query that dynamically
builds up the disable or drop indexes SQL.

 As discussed already, you should drop an index only if you’re certain that it’s never
used. As a side note, you could use this script that disables/drops indexes and the

Amalgamate unused
indexes SQLC

Build the disable
or drop index SQL D

DebugE

Execute SQLF
www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 10 The self-healing database
previous script that creates missing indexes together to automatically create required
indexes and remove undesirable indexes.

10.8 Summary
This chapter introduced the concept of a self-healing database that enhances the auto-
mated features provided out of the box for SQL Server maintenance. I took several of
the scripts discussed in previous chapters and extended them so they could be run
periodically, as jobs, via the SQL agent to perform various self-healing functions.

 I described how to identify queries that are running slower than normal and mark
them for recompilation, so that the next time they’re used, a new query plan would be
created, hopefully with a better data access mechanism.

 I addressed the perennial problem of retrieving fragmented data via a script that
determines the degree of fragmentation and either performs an index rebuild or
index reorganization.

 I provided a script to intelligently update the statistics of those indexes whose data
content has changed. The weighted algorithm provided allowed sufficient sampling to
be undertaken irrespective of the index’s size. A related time-limiting sampling algo-
rithm was also provided.

 For systems with regular SQL batches or batches with known sequencing, I pro-
vided a script that allows updating of the relevant statistics immediately prior to run-
ning the SQL batches. This should improve the performance of these queries.

 Two related but diametrical scripts were provided to implement missing indexes
and to disable or drop any unused indexes. The potential danger of automating this
particular functionality was highlighted.

 Having discussed several features to automate the optimization of your SQL Server
systems, we’ve almost come to end of the book. The final chapter will discuss a galli-
maufry of scripts that I think you’ll find both interesting and useful.
www.it-ebooks.info

http://www.it-ebooks.info/

Useful scripts
Gallimaufry refers to “odds and ends,” and that nicely sums up the content of this
chapter. It contains a hodgepodge of scripts that can reveal some interesting and
useful information. The scripts given in this chapter wouldn’t sit comfortably
within the other chapters of the book.

 The content of this chapter is wide ranging, covering such diverse areas as find-
ing which SQL queries everyone last ran, getting Windows system information
within SQL Server, determining where your queries really spend their time (as
opposed to the cached plan estimate), and a lightweight SQL tracing utility. We’ll
begin by looking at how you can view everyone’s last-run query.

This chapter covers
■ Viewing everyone’s last-run SQL query
■ A generic performance test harness
■ Estimating the finishing time of jobs
■ Finding where your query really spends

its time
■ A simple lightweight tracing utility
285

www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 11 Useful scripts
11.1 Viewing everyone’s last-run SQL query
Viewing details of everyone’s last-run SQL queries can be useful in understanding
how your users use the database. It can also be useful in checking users when they
say, “the only SQL I ran was....” Often there’s a difference between what users say
they’ve done and what they’ve really done. The script provided here should help
clear up this discrepancy.

11.1.1 Find the last-run queries

It can be both useful and informative to look at the SQL queries that users of your
servers have been running. This can help you examine the level of understanding of
your users (do they use stored procedures or inline SQL?). Running the SQL script
given in our first listing will identify everyone’s last-run query.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT c.session_id, s.host_name, s.login_name, s.status
 , st.text, s.login_time, s.program_name, *
FROM sys.dm_exec_connections c
INNER JOIN sys.dm_exec_sessions s ON c.session_id = s.session_id
CROSS APPLY sys.dm_exec_sql_text(most_recent_sql_handle) AS st
ORDER BY c.session_id

The listing shows that two DMVs and one DMF are involved in finding everyone’s last-
run SQL query. Table 11.1 provides a brief description of each.

The joining of the DMVs and DMF provides us with enough information to discover
everyone’s last-run SQL query, across all the databases on the server. The DMVs
sys.dm_exec_connections and sys.dm_exec_sessions are joined on their common key
column session_id. The connection’s most_recent_sql_handle is passed to the DMF
sys.dm_exec_sql_text to retrieve the text of the SQL query.

NOTE Because we’re not joining to any actively running SQL queries (via the
DMV sys.dm_exec_requests), this script enables us to see everyone’s last-run
SQL query, even if they’re not actively running anything.

An example of the type of output for this query is shown in figure 11.1.

Listing 11.1 Finding everyone’s last-run query

Table 11.1 DMVs/DMF used to find everyone’s last-run SQL query

DMV/DMF Description

sys.dm_exec_connections Contains details of connections to SQL Server

sys.dm_exec_sessions Contains details of sessions on SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle
www.it-ebooks.info

http://www.it-ebooks.info/

287A generic performance test harness
Figure 11.1 shows the result of running the “finding everyone’s last-run query” script.
The columns that are output show where the SQL query was run from, the name of
the user who ran the query, the name of the program that issued the query, and the
text of the SQL query.

 Now that you’ve seen the details of how you can view everyone’s last-run query, I’ll
show you a script that can be used to test the performance of your code.

11.2 A generic performance test harness
Often it can be difficult to determine whether any improvements have been made
when you change your SQL queries. Sometimes the time differences seem too small to
measure, or they involve the cumbersome task of instrumenting your queries to out-
put timings and other debug information. In addition to time differences, changes
could also be reflecting a fewer number of reads or writes occurring; having these
details might also determine whether a prospective change is good or not.

 The test harness described here allows you to record performance details relating
to your queries, for example, total duration, number of reads, and number of writes.
Its purpose is to obtain these performance metrics first when the unchanged SQL
query is run and then again when you change the query to incorporate a potential
improvement. For example, you might change the algorithm the SQL query uses or
add an index that you think might be useful. Finally, you compare the two outputs and
determine whether the change is an improvement.

 The script given in this section will enable you to test the changes in your queries
within a generic test framework. The script will output, for each SQL query run within
a given batch or stored procedure, the total duration of the query, the time it spent
using the CPU, the time it spent waiting (or being blocked), the number of reads, the
number of writes, the number of times each line of SQL within the query was exe-
cuted, the text of the individual SQL query, the text of the parent SQL query, and the
database the query ran on.

 As always, there’s the caveat that the DMVs will record details of all the queries
that are running on the server. It’s possible to extract your particular queries from
the output or limit the output to a given database. If you really need to determine the

Figure 11.1 Output showing details of everyone’s last-run SQL queries
www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 11 Useful scripts
standalone metrics of your queries, I suggest you run them on a standalone server or
else at a time when you know little else is running. On occasion you might actually
want details of all the other running queries to see how your query runs when inter-
acting with other queries.

 This script can prove quite useful in determining which of a series of algorithms to
use, rather than guess or follow conventional wisdom, where a given approach is
assumed to be correct. For example, when is it better to replace the contents of an IN
clause with an INNER JOIN to a temporary table containing the IN clause’s details?
Using this script will provide metrics to support your decisions.

11.2.1 Using the generic performance test harness

Using a generic test harness to conduct your performance measurements provides a
repeatable method of testing. Running the SQL script given in the following listing
shows how the generic performance test harness is used.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

EXEC PutYourQueryHere

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) –
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time blocked]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName

Listing 11.2 Generic performance test harness

Get pre-work query
DMV counters

B

Run your test
query here

C
Get post-
work query
DMV counters

D

Calculate
metrics for
your query

E

www.it-ebooks.info

http://www.it-ebooks.info/

289A generic performance test harness
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2 ON p2.sql_handle =
 ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
ORDER BY qt.text, p2.statement_start_offset

DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot

The listing shows that one DMV and one DMF are involved in running the generic per-
formance test harness. A brief description of each is given in table 11.2.

The script works by first taking a snapshot of the relevant columns of the DMV
sys.dm_exec_query_stats B. The next step is to run the query you want to obtain met-
rics about C. The script then takes another snapshot of the relevant columns of the
DMV sys.dm_exec_query_stats D and compares the two snapshots to determine which
metrics have changed E. The sql_handle column is decoded to obtain the Parent
Query; this is further manipulated to extract the Individual Query, which the individ-
ual metrics apply to.

 We use a RIGHT OUTER JOIN because there may be queries that aren’t in the first
snapshot but are present in the second snapshot, and we want the details of these que-
ries. Similarly, we use ISNULL on the various DMV metric columns to catch any queries
that aren’t in the first snapshot.

 The results are sorted by the text of the query and then by the offset of the Individ-
ual Query. This allows us to see the order of execution of the SQL statements within
any batch of SQL statements. We could also use this to determine which SQL state-
ments have (or have not) been executed for this run.

 An example of the type of output for this query is shown in figure 11.2.
 Figure 11.2 shows the result of running the “generic performance test harness”

script. The columns in the output show the accumulated metrics for the total duration
of the Individual Query, the time it spent on the CPU, the time it spent waiting (or
being blocked), the number of reads and writes it performed, the number of times

Table 11.2 DMV/DMF to provide a generic performance test harness

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached query plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given plan_handle or
sql_handle
www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 11 Useful scripts
the Individual Query was executed, and the text of the Individual Query and the Par-
ent Query.

 Having discussed a generic test harness, I’d now like to extend this into a more
practical example, such as one used for determining the impact of a system upgrade.

11.3 Determining the impact of a system upgrade
When you implement a system upgrade, such as a new version of SQL Server or a ser-
vice pack, it can be difficult to quantify its value—or indeed if it will degrade perfor-
mance! If you run this script before the upgrade is made and subsequent to any
upgrade, it will allow you to determine the effect of the upgrade on performance. I’ve
used this script to determine the impact on query performance of upgrading from
SQL Server 2005 to SQL Server 2008.

11.3.1 Quantifying system upgrade impact

Determining the impact of a system upgrade can influence whether the upgrade
should be implemented. Running the SQL script given here provides a method for
recording metrics at the database, Parent Query, and Individual Query levels.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 total_elapsed_time, total_worker_time, total_logical_reads
 , total_logical_writes, total_clr_time, execution_count
 , statement_start_offset, statement_end_offset, sql_handle, plan_handle
INTO #prework
FROM sys.dm_exec_query_stats

EXEC PutYourWorkloadHere

SELECT
 total_elapsed_time, total_worker_time, total_logical_reads
 , total_logical_writes, total_clr_time, execution_count
 , statement_start_offset, statement_end_offset, sql_handle, plan_handle
INTO #postwork
FROM sys.dm_exec_query_stats

SELECT
 SUM(p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0))
 AS [TotalDuration]

Listing 11.3 Determining the performance impact of a system upgrade

Figure 11.2 Output showing details of running SQL queries within the generic performance test harness

Get pre-work
counters

B

Do something here
(query/time interval)

C
Get post-work
counters

D

Get totals by
database

E

www.it-ebooks.info

http://www.it-ebooks.info/

291Determining the impact of a system upgrade
 , SUM(p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Total Time on CPU]
 , SUM((p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) –
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0)))
 AS [Total Time Waiting]
 , SUM(p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0))
 AS [TotalReads]
 , SUM(p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0))
 AS [TotalWrites]
 , SUM(p2.total_clr_time - ISNULL(p1.total_clr_time, 0))
 AS [Total CLR time]
 , SUM(p2.execution_count - ISNULL(p1.execution_count, 0))
 AS [Total Executions]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #prework p1
RIGHT OUTER JOIN
 #postwork p2 ON p2.sql_handle = ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
GROUP BY DB_NAME(qt.dbid)

SELECT
 SUM(p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0))
 AS [TotalDuration]
 , SUM(p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Total Time on CPU]
 , SUM((p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0))
 - (p2.total_worker_time - ISNULL(p1.total_worker_time, 0)))
 AS [Total Time Waiting]
 , SUM(p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0))
 AS [TotalReads]
 , SUM(p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0))
 AS [TotalWrites]
 , SUM(p2.total_clr_time - ISNULL(p1.total_clr_time, 0))
 AS [Total CLR time]
 , SUM(p2.execution_count - ISNULL(p1.execution_count, 0))
 AS [Total Executions]
 , DB_NAME(qt.dbid) AS DatabaseName
 , qt.text AS [Parent Query]
FROM #prework p1
RIGHT OUTER JOIN
 #postwork p2 ON p2.sql_handle = ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
GROUP BY DB_NAME(qt.dbid), qt.text
ORDER BY [TotalDuration] DESC

Get totals by
Parent Query

F

www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 11 Useful scripts
SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)
 AS [TotalDuration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0)
 AS [Total Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0))
 - (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Total Time Waiting]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0)
 AS [TotalReads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [TotalWrites]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [Total CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0)
 AS [Total Executions]
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #prework p1
RIGHT OUTER JOIN
 #postwork p2 ON p2.sql_handle = ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
ORDER BY [TotalDuration] DESC

DROP TABLE #prework
DROP TABLE #postwork

This script extends the previous “generic performance test harness” script. First, you
take a snapshot of the current DMV sys.dm_exec_query_stats performance metrics B.
Next, you should run your normal processing or overnight batch of SQL queries C.
Then you take another snapshot of the latest sys.dm_exec_query_stats performance
metrics D.

 The important part to note is that the first query snapshot is run to get base met-
rics; then you need to wait a given amount of time, until the batch under investigation
has completed. Then you can run the rest of the script.

 The three subsequent queries in the script show varying degrees of detail. The
first query shows the sum total duration of all the queries E, the total time on the
CPU, the total time waiting (or being blocked), the total number of reads and
writes, the total CLR time, and the total number of executions, for each database
on the server.

 The next script query F is similar to the previous one, but it shows the sum
details broken down by Parent Query within the database. The final query G

Get totals by Individual QueryG
www.it-ebooks.info

http://www.it-ebooks.info/

293Estimating the finishing time of system jobs
shows the sum details broken down by Individual Query within each Parent Query
within the database.

 Running the script for both the original system and when the system has been
upgraded allows you to compare the output from the three script-summation queries.
You can import the output from these queries into Excel to allow easier comparison.

 You can use the output from the first of these three script-summation queries to
determine whether there’s a beneficial or detrimental change. The subsequent que-
ries allow you to drill down into specific Parent Queries or indeed Individual Queries
to determine the impact of the upgrade at these levels.

 Sample output for this query is shown in figure 11.3. This figure shows the result of
running the “Determining the performance impact of a system upgrade” script. Three
grids are output: The first contains values at the database level, for total duration, total
time on the CPU, total time waiting, total reads, total writes, and total executions. The
second grid contains values at the Parent Query level, within each database; it also
contains the text of the Parent Query. The third grid contains values at the Individual
Query level, within each Parent Query, within each database; it also contains the text
of the Individual Query.

11.4 Estimating the finishing time of system jobs
For some administration tasks, such as restores, backups, and rollbacks, one of the
DMVs (sys.dm_exec_requests) contains details of when the job started and how com-
plete it is. If you know when a job started and how far it has progressed, you can per-
form a simple calculation to determine its expected completion time.

 The relevant columns of the sys.dm_exec_requests DMV are percent_complete and
start_time. According to SQL Server Books Online documentation, for sys.dm_exec_
requests (available at http://msdn.microsoft.com/en-us/library/ms177648.aspx) the
percent_complete column should be populated for the following commands:

■ ALTER INDEX REORGANIZE
■ AUTO_SHRINK option with ALTER DATABASE
■ BACKUP DATABASE

Figure 11.3 Output showing details of the impact of a system upgrade
www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ms177648.aspx
http://www.it-ebooks.info/

294 CHAPTER 11 Useful scripts
■ CREATE INDEX
■ DBCC CHECKDB
■ DBCC CHECKFILEGROUP
■ DBCC CHECKTABLE
■ DBCC INDEXDEFRAG
■ DBCC SHRINKDATABASE
■ DBCC SHRINKFILE
■ KILL (Transact-SQL)
■ RESTORE DATABASE
■ UPDATE STATISTICS

But in my testing I discovered that the column was not updated for several of these
commands, for example, UPDATE STATISTICS. For the commands that use the
percent_complete column correctly, the script that follows allows you to estimate
when a job will finish.

11.4.1 Estimating when a job will end

Estimating the finishing time of admin jobs can be useful for scheduling and inform-
ing users when the work should complete. Running the SQL script given in the follow-
ing listing allows you to determine the estimated finishing time of any jobs that
increment the percent_complete column of the sys.dm_exec_requests DMV.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT r.percent_complete
 , DATEDIFF(MINUTE, start_time, GETDATE()) AS Age
 , DATEADD(MINUTE, DATEDIFF(MINUTE, start_time, GETDATE()) /
 percent_complete * 100, start_time) AS EstimatedEndTime
 , t.Text AS ParentQuery
 , SUBSTRING (t.text,(r.statement_start_offset/2) + 1,
 ((CASE WHEN r.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), t.text)) * 2
 ELSE r.statement_end_offset
 END - r.statement_start_offset)/2) + 1) AS IndividualQuery
 , start_time
 , DB_NAME(Database_Id) AS DatabaseName
 , Status
FROM sys.dm_exec_requests r
CROSS APPLY sys.dm_exec_sql_text(sql_handle) t
WHERE session_id > 50
 AND percent_complete > 0
ORDER BY percent_complete DESC

Here you can see that one DMV and one DMF are involved in estimating when a job
will finish. Table 11.3 provides a brief description of each.

Listing 11.4 Estimating when a job will finish
www.it-ebooks.info

http://www.it-ebooks.info/

295Get system information from within SQL Server
The joining of the DMV and DMF provides you with enough information to determine
when an admin job should finish. The request’s sql_handle is passed to the DMF
sys.dm_exec_sql_text to retrieve the text of the SQL query. Further manipulation is
applied to extract the Individual Query text from the Parent Query.

 The core of the calculation of the job’s end time is to determine how many min-
utes represent 1% of the job’s progress. Knowing this, you can calculate how many
minutes it will take for 100% of the job’s progress. You add this time to the job’s start
time to determine the expected end time of the job.

NOTE This calculation assumes, for the duration of this job, that the future
use of the server will be the same as the past. If a resource-intensive query
runs midway through the admin job’s work, the estimated completion time
will need to be recalculated.

An example of the type of output for this query is shown in figure 11.4.

Figure 11.4 shows the result of running the “Estimating when a job will finish”
script. The columns that are output show the current level of completeness (percent_
complete), how many minutes the job has been running so far (Age), the estimated
end time, the text of both the Parent Query and the Individual Query, the start time,
and the database.

 Having discussed how you can estimate the expected end time of a system job, I’ll
now show you how to get system information from within SQL Server itself.

11.5 Get system information from within SQL Server
A standalone DMV named sys.dm_os_sys_info retrieves miscellaneous information
about the computer that SQL Server runs on, as well as the resources available and
consumed by SQL Server. This DMV can prove useful when you don’t have permission
to the underlying filesystem, but you have DMV access. To retrieve the system informa-
tion, you just need to issue the simple SQL statement given here:

SELECT * FROM sys.dm_os_sys_info

Table 11.3 DMV/DMF used to estimate when a job will finish

DMV/DMF Description

sys.dm_exec_requests Contains details of requests executing on SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given plan_handle
or sql_handle

Figure 11.4 Output showing details of when a job is expected to finish
www.it-ebooks.info

http://www.it-ebooks.info/

296 CHAPTER 11 Useful scripts
A list of the more useful columns exposed, together with a brief description of their
meaning (taken largely from SQL Server Books Online, available at http://msdn
.microsoft.com/en-us/library/ms175048.aspx), is given in table 11.4.

You can discover the number of physical CPUs by running the following SQL snippet:

SELECT cpu_count AS [Logical CPUs]
,cpu_count / hyperthread_ratio AS [Physical CPUs]
FROM sys.dm_os_sys_info

If you’re using SQL Server 2005, you can discover when the computer was restarted by
running this SQL snippet:

SELECT DATEADD(ss, -(ms_ticks / 1000), GetDate()) AS [Start dateTime]
FROM sys.dm_os_sys_info

The variable ms_ticks contains the number of milliseconds since the computer was
last started. To prevent an arithmetic overflow error, the value of the column ms_ticks
is divided by 1000 to obtain the value in seconds, and this is subtracted from the cur-
rent date (GetDate()) using the DATEADD function.

 The information returned from the sys.dm_os_sys_info DMV can prove useful when
making decisions within your SQL code base. For example, you might alter your code’s
algorithm depending on the amount of memory or the number of CPUs available (or
perhaps use the output to determine whether you’re running in your production or
development environment). SQL Server 2008 has a column named sqlserver_start_
time that contains the date and time SQL Server was started.

 An example of the type of output obtained when selecting all the columns from
the DMV sys.dm_os_sys_info is shown in figure 11.5. This figure shows the result of
running the SQL query SELECT * FROM sys.dm_os_sys_info. The columns that are out-
put include the number of CPUs and the amount of physical and virtual memory.

 Now that you know how to obtain system information from within SQL Server
itself, we’ll look at how you can determine which Enterprise-level SQL Server features
have been enabled.

Table 11.4 The columns of the sys.dm_os_sys_info DMV

Column Description

ms_ticks Number of milliseconds since the computer was started

cpu_count Number of logical CPUs on the computer

physical_memory_in_bytes Amount of physical memory available

virtual_memory_in_bytes Amount of virtual memory available

sqlserver_start_time_ms_ticks Number of milliseconds since SQL Server was last restarted (in
2008 and higher)

sqlserver_start_time Date and time SQL Server was last started (in 2008 and higher)
www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ms175048.aspx
http://www.it-ebooks.info/

297Viewing enabled Enterprise features (2008 only)
11.6 Viewing enabled Enterprise features (2008 only)
Some SQL Server features don’t exist on all editions of SQL Server. For example, the
data-compression function is currently available on only the Enterprise and Developer
editions of SQL Server.

 A standalone DMV named sys.dm_db_persisted_sku_features retrieves details of
which Enterprise-level functionality has been enabled.

 It can be important to know which Enterprise features have been enabled if you
want to move a copy of your database to a lesser edition of SQL Server. You might want
to do this as part of your disaster recovery plans. Additionally, you might want to
restore a copy of your production database to another server (on a lesser version of
SQL Server) to allow you to perform a resource-intensive DBCC CHECKDB check
(doing this on the nonproduction server is a common and recommended practice). It
doesn’t make sense to spend valuable time and resources checking the database on
the production server when it can be offloaded to a nonproduction database. This
also frees up the production database for other important maintenance tasks such as
index defragmentation and updating statistics.

 To retrieve details of which SQL Server Enterprise functions have been enabled,
you just need to issue the simple SQL statement given here:

SELECT * FROM sys.dm_db_persisted_sku_features

The output from this query will show which features have been enabled. If no rows are
output, then no features have been enabled. Currently, in SQL Server 2008, the fea-
tures listed in table 11.5 are reported on.

The information returned from the sys.dm_db_persisted_sku_features DMV can
prove useful in both determining whether certain functionality has been enabled

Table 11.5 Enterprise-level features

Feature Description

Compression Indicates at least one table or index uses data compression

Partitioning Indicates the database contains partitioned tables, indexes,
schemes, or functions

Transparent DataEncryption Indicates the database has been encrypted with transparent data
encryption

ChangeCapture Indicates the database has change data capture enabled

Figure 11.5 Output showing details of SQL Server system information
www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 11 Useful scripts
and also whether certain Enterprise-level features need
to be disabled to allow you to move to a lower edition of
SQL Server.

 An example of the type of output for this query is shown
in figure 11.6.

 Figure 11.6 shows the result of running the SQL query
SELECT * FROM sys.dm_db_persisted_sku_features. It con-
tains one row for each feature that’s enabled; if no features are enabled, no rows
are output.

 Now that we’ve discussed how you can determine which Enterprise-level SQL
Server features have been enabled, let’s look at a monitor script that can be used to
determine what’s been happening on your SQL Server.

11.7 Who’s doing what and when?
The following script can be used to monitor who’s doing what and when they’re doing
it. This script can be used as is as a monitor script, to identify what’s happening on the
server at regular intervals. Alternatively, you can use it as a template for determining
how to record DMV metrics at regular intervals.

 The script we use to find out who’s doing what and when is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

CREATE TABLE dbo.WhatsGoingOnHistory(
 [Runtime] [DateTime],
 [session_id] [smallint] NOT NULL,
 [login_name] [varchar](128) NOT NULL,
 [host_name] [varchar](128) NULL,
 [DBName] [varchar](128) NULL,
 [Individual Query] [varchar](max) NULL,
 [Parent Query] [varchar](200) NULL,
 [status] [varchar](30) NULL,
 [start_time] [datetime] NULL,
 [wait_type] [varchar](60) NULL,
 [program_name] [varchar](128) NULL
)
GO

CREATE UNIQUE NONCLUSTERED INDEX
[NONCLST_WhatsGoingOnHistory] ON [dbo].[WhatsGoingOnHistory]
([Runtime] ASC, [session_id] ASC)
GO

INSERT INTO dbo.WhatsGoingOnHistory
SELECT
 GETDATE()
 , s.session_id
 , s.login_name
 , s.host_name
 , DB_NAME(r.database_id) AS DBName

Listing 11.5 Who’s doing what and when?

Create
tableB

Create
index

C

Run first
batchD

Figure 11.6 Output
showing details of enabled
Enterprise features
www.it-ebooks.info

http://www.it-ebooks.info/

299Who’s doing what and when?
 , SUBSTRING (t.text,(r.statement_start_offset/2) + 1,
 ((CASE WHEN r.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), t.text)) * 2
 ELSE r.statement_end_offset
 END - r.statement_start_offset)/2) + 1) AS [Individual Query]

 , SUBSTRING(text, 1, 200) AS [Parent Query]
 , r.status
 , r.start_time
 , r.wait_type
 , s.program_name
FROM sys.dm_exec_sessions s
INNER JOIN sys.dm_exec_connections c ON s.session_id = c.session_id
INNER JOIN sys.dm_exec_requests r ON c.connection_id = r.connection_id
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) t
WHERE s.session_id > 50
 AND r.session_id != @@spid

WAITFOR DELAY '00:01:00'
GO 1440 -- 60 * 24 (one day)

This script shows that three DMVs and one DMF are involved in recording who’s doing
what and when. A brief description of each is given in table 11.6.

The joining of the DMVs and the DMF provides us with enough information to record
who’s doing what and when, across all the databases on the server. The DMVs
sys.dm_exec_sessions and sys.dm_exec_connections are joined on their common key
column session_id. Similarly, the DMVs sys.dm_exec_connections and sys.dm_exec_
requests are joined on their common key column connection_id. The request contains
the column sql_handle, which is passed to the DMF sys.dm_exec_sql_text to retrieve
the text of the SQL query. The text of the SQL query is decoded to obtain the Individual
Query within the Parent Query, which was running at the time the script was running.

 We include only sessions with spids of greater than 50, because we’re interested
only in user queries. We also filter out details of this actual script from the results, by
excluding its running spid.

 The script works by creating a table to hold the results of this script B, together
with an index on the same table C. The GO statement ensures that this batch runs
separately D. The second part of the script then runs multiple times and puts its
results into the created table. A delay is implemented between recording results by

Table 11.6 DMVs/DMF to determine who’s doing what and when

DMV/DMF Description

sys.dm_exec_sessions Contains details of sessions on SQL Server

sys.dm_exec_connections Contains details of connections to SQL Server

sys.dm_exec_requests Contains details of requests executing on SQL Server

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle or
plan_handle

WaitE
Run second
batch repeatedly

F

www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 11 Useful scripts
using the WAITFOR DELAY command E. In this example, the time period is one
minute; you may want to alter this time interval to suit your needs.

 The number of times this second batch (the DMV query and WAITFOR command)
is run is determined by the number that follows the GO command F. Hopefully, you
can use this script as a template for your own investigations.

 Having discussed a monitor script that can be used to determine what’s been hap-
pening on your SQL Server, we’ll now look at where your query really spends its time.
Sometimes this can yield quite surprising results!

11.8 Finding where your query really spends its time
The cached plan is a great tool for helping determine how SQL Server will fulfill
your query’s needs. It uses metadata to decide the best way to obtain data to satisfy your
query. Such metadata includes the number of rows in a table, available indexes, sta-
tistics, and constraints.

 The cached plan is often used to determine where your SQL query or routine is
spending most of its time. For example, if a routine consists of five SQL statements,
the optimizer will, based on the available metadata, assign a cost to each of the SQL
statements, relative to the whole batch of statements. Often this cost is used as a start-
ing point for optimizing the batch. The statement with the highest cost is most often
targeted for improvement.

 However, the optimizer knows nothing about concurrency, about what other state-
ments are running when your SQL query is running, and the competition for
resources. Competing queries can result in waiting and blocking. You can determine
where your query spends its actual time by using the script given in this section.

11.8.1 Locating where your queries are spending their time

Often, where you think your queries spend their time is at odds with where they really
spend their time, even with what the execution plan suggests. The only real way to
determine where your queries spend their time is to wrap them in a performance har-
ness like the one given here. Running the SQL script given in the following listing will
allow you to determine where your queries really spend their time.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

EXEC MO.PNLYearToDate_v01iws
 @pControlOrgIds = '537'
 , @pCOBStart = '27 may 2009'
 , @pCOBEnd = '27 may 2009'

Listing 11.6 Determining where your query spends its time

Store pre-work
query counters

B

Run your query
or batch of SQLC
www.it-ebooks.info

http://www.it-ebooks.info/

301Finding where your query really spends its time
SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset,

last_execution_time
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0)) -
 (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time waiting]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , p2.last_execution_time
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2
ON p2.sql_handle = ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
 AND qt.text LIKE '%PNLYearToDate_v01iws %'
ORDER BY [Parent Query], p2.statement_start_offset

DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot

The listing uses one DMV and one DMF to identify where queries spend their time.
Table 11.7 briefly describes each.

Table 11.7 DMV/DMF to find where queries spend their time

DMV/DMF Description

sys.dm_exec_query_stats Contains aggregated performance statistics for cached plans

sys.dm_exec_sql_text DMF that returns the SQL text identified by a given sql_handle or
plan_handle

Store post-work query countersD

Calculate
statement metrics

E

Filter in the
routine you want

F

Sort by
statement offsetG
www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 11 Useful scripts
In the listing, the relevant counters and identifiers from the sys.dm_exec_query_stats
DMV are stored in a temporary table (#PreWorkQuerySnapShot in the example) B.
Next, the query or stored procedure you want to investigate is run C. After the
query is run (named ‘PNLYearToDate_v01iws’ in the example), the counters and
identifiers are again recorded D. Finally, the delta between the two DMV snapshots
is calculated E. Note that we include only those statements that relate to the query
we’re investigating, the text ‘PNLYearToDate_v01iws’ in this example F. We do this
by filtering in those SQL statements where the Parent Query contained the name of
the text we’re searching for. If a batch of SQL queries has been run instead, a unique
identifier associated with that batch could be used, for example, a constant piece of
text like ‘—ThisRoutineId99’.

 The pre- and post-work temporary tables are joined on their common keys
(sql_handle, plan_handle, statement_start_offset, and statement_end_offset). Only
those statements that have actually run and belong to the query we’re investigating
are included. We include a RIGHT OUTER JOIN because if the query hasn’t been run
previously, it won’t be included in the pre-work snapshot.

 The DMV’s sql_handle is passed to the DMF sys.dm_exec_sql_text to retrieve the
text of the SQL query. We use a common pattern to extract the Individual Query, which
the timings relate to, from the Parent Query. The output is sorted by statement_
start_offset G in ascending order.

 An example of the type of output for this query is shown in figure 11.7. This figure
shows the result of running the “Determining where your query spends its time”
script. The columns that are output show the duration, time on the CPU, time spent
waiting (or being blocked), the number of reads and writes, the number of execu-
tions, the last time the query was executed, the text of both the Individual Query and
the Parent Query, and the database name. The rows are sorted by the offset of the
Individual Query within its Parent Query.

 It might be worthwhile amending the script to output only the first 100 characters
of the Parent Query and the Individual Query because these can take up a lot of mem-
ory. You could use the output to determine which statement should be optimized.

 Because the times recorded (duration, time on CPU, time waiting) are actual
times, they provide a better representation of where improvements should be targeted

Figure 11.7 Output showing where a query spends its time
www.it-ebooks.info

http://www.it-ebooks.info/

303Memory usage per database
than using the cached plan alone. I had one routine that was taking five minutes to
run. When I ran it inside the script included here, I could see that the last state-
ment was taking 60% of the cost. In the cached plan, this last statement was thought
to represent only 3% of the cost of the batch. If I had tried to improve this batch
based on what the cached plan was suggesting to me, I would have optimized the
wrong area.

 Now that you know where your query really spends its time, we’ll look at a useful
script that determines how much memory each database is currently using.

11.9 Memory usage per database
When data is requested of SQL Server, the data is read from the underlying physical
disks and brought into an area of memory called the buffer pool. If this data is subse-
quently required, it tends to be read from the buffer pool. When the data in the
buffer pool is updated, SQL Server ensures requests for data obtain the updated data.
Periodically, the changed data is written to the disks.

 It’s possible to determine how much memory each database is taking in the buffer
pool. Sometimes, a query can run slowly owing to problems with memory, resulting in
error messages being written to SQL Server’s error log. As well as being a useful inves-
tigative script when memory might be a concern, the script can be used to determine
whether a database is hogging the buffer pool and should perhaps be moved to its
own server.

11.9.1 Determining the memory used per database

When memory problems are reported in the SQL Server error log or via SSMS, one of
the first queries I run is the one given in listing 11.7. It quickly tells me which data-
bases are using the available memory, and with the queries on tempdb memory usage
(given in chapter 9) it provides a fuller picture of memory requirements. Running the
SQL script given here will identify how much memory each database on the server
instance is using.

SET TRAN ISOLATION LEVEL READ UNCOMMITTED

SELECT
 ISNULL(DB_NAME(database_id), 'ResourceDb') AS DatabaseName
 , CAST(COUNT(row_count) * 8.0 / (1024.0) AS DECIMAL(28,2))
 AS [Size (MB)]
FROM sys.dm_os_buffer_descriptors
GROUP BY database_id
ORDER BY DatabaseName

Here one DMV is involved in determining how much memory is used by each database
on the server instance; a brief description of it is given in table 11.8.

Listing 11.7 Memory used per database
www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 11 Useful scripts
The script counts the number of pages in the buffer pool, for each database.
Because a database page is 8 KB in size, you would multiply the number of pages
(COUNT(row_count)), by 8.0 to get the number of kilobytes used by the database.
You’d then divide this value by 1024 to obtain the value in terms of megabytes. The
results are ordered by database name.

 An example of the type of output for this query is shown in figure 11.8.
 Figure 11.8 shows the result of running the “Memory

used per database” script. The columns that are output
show the amount of the memory, in megabytes, that each
database is using.

 Now that we’ve discussed how much memory each
database is using, let’s drill down further and look at
which individual tables and indexes are using this buffer
pool memory. This is important because it allows you to
see how the SQL queries are using the underlying database
structures, and you can use this knowledge to optimize
these objects.

11.10 Memory usage by table or index
Having looked at how much memory in the buffer pool each database uses, the next
logical step is to examine which tables/heaps and indexes make up that memory. This
would give you greater insight into how the data is needed and used by the SQL que-
ries running on your databases, providing you with an opportunity to optimize them.

 In addition, if the content of the memory is recorded over a given time period, you
can use this to help determine how much memory is necessary so the queries are fed
from the data in RAM rather than accessing the much slower physical disks. Summing
up the maximum size of all the tables, indexes, and heaps in the buffer pool over a
given time interval will help you answer the question, “How much RAM do I need?”

11.10.1 Determining the memory used by tables and indexes

Tables, heaps, and indexes are cached into the buffer pool when SQL queries run.
Having this data in the buffer pool is an optimization technique, because reading the
data from memory is much more efficient than reading the data from the physical
disks. This can be illustrated clearly by the fact that physical disk access is measured in
milliseconds whereas buffer pool memory access is measured in nanoseconds.

Table 11.8 DMV used to determine the memory used per database

DMV Description

sys.dm_os_buffer_descriptors Contains details of the data pages that are currently in SQL
Server buffer pool

Figure 11.8 Output
showing how much memory
is used by each database
www.it-ebooks.info

http://www.it-ebooks.info/

305Memory usage by table or index
 Running the SQL script given in the following listing will identify how much mem-
ory specific tables, heaps, and indexes are using in the buffer pool in the current data-
base (the database that this script runs in).

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 OBJECT_NAME(p.[object_id]) AS [TableName]
 , (COUNT(*) * 8) / 1024 AS [Buffer size(MB)]
 , ISNULL(i.name, '-- HEAP --') AS ObjectName
 , COUNT(*) AS NumberOf8KPages
FROM sys.allocation_units AS a
INNER JOIN sys.dm_os_buffer_descriptors AS b
 ON a.allocation_unit_id = b.allocation_unit_id
INNER JOIN sys.partitions AS p
INNER JOIN sys.indexes i ON p.index_id = i.index_id
 AND p.[object_id] = i.[object_id]
 ON a.container_id = p.hobt_id
WHERE b.database_id = DB_ID()
 AND p.[object_id] > 100
GROUP BY p.[object_id], i.name
ORDER BY NumberOf8KPages DESC

The listing shows one DMV and three system tables involved in determining which
tables, heaps, and indexes are using the buffer pool memory. They’re briefly
described in table 11.9.

The joining of the DMV and three system tables provides us with enough information
to identify which objects are using the memory in the buffer pool. The DMV and the
sys.allocation_units system table are joined on their common key column, allocation_
unit_id. The system tables sys.partitions and sys.indexes are joined on the object_id and
index_id key columns. In addition, the sys.indexes table joins to the sys.allocation_
units and sys.partitions tables.

 The script counts the number of pages in the buffer pool for each object (table,
heap, or index). Because a database page is 8 KB in size, you multiply the number of

Listing 11.8 Memory used by objects in the current database

Table 11.9 DMV/tables used to determine the memory used by database objects

DMV/table Description

sys.dm_os_buffer_descriptors Contains details of the data pages that are in SQL Server
buffer pool

sys.allocation_units Contains a row for each allocation unit in the database

sys.partitions Contains a row for each partition of all the tables and most
types of indexes in the database

sys.indexes Contains details for each index, for example, name and type
www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 11 Useful scripts
pages (COUNT(*)) by 8.0 to get the number of kilobytes used by the database. You
then divide this value by 1024 to obtain the value in terms of megabytes. Because some
objects use little space (less than a megabyte), the script also reports on the number of
pages that each object has in the buffer pool; this is reported under the column
NumberOf8KPages. Indexes with a NULL value in the name column are heaps; the
script decodes these to explicitly report the value ‘--HEAP --’. The results are ordered
by the column NumberOf8KPages in descending order.

 An example of the type of output for this query is shown in figure 11.9. This figure
shows the result of running the “Memory used by objects in the current database”
script. The columns that are output show the name of the table, the size of the mem-
ory in megabytes, the object name (table, heap, or index), and the number of 8 KB
pages taken in memory.

 Knowing which objects the SQL queries use allows you to optimize these identified
structures. For example, in the case of indexes, you should ensure that their statistics
are up to date and have a good sampling percentage. For tables, you might want to
have the most-used ones on different physical disks, ensuring they can be read into
memory concurrently.

 You could modify this script to report periodically the usage pattern of database
objects over time. A template script (for who’s using the database) was given previ-
ously in section 11.7. This would provide you with a further opportunity to optimize
the objects before their known usage time.

 You can get a measure of how long the average page stays in the buffer pool by
inspecting the DMV sys.dm_os_performance_counters, using the following query.
Typically, values above 300 are viewed as good; values below this may suggest mem-
ory problems.

SELECT cntr_value AS [Page Life Expectancy]
FROM sys.dm_os_performance_counters
WHERE OBJECT_NAME = 'SQLServer:Buffer Manager'
 AND counter_name = 'Page life expectancy'

Figure 11.9 Output showing how much memory is used by each object in the current database
www.it-ebooks.info

http://www.it-ebooks.info/

307Finding I/O waits
Having discussed how much memory each object in the database is using, we’ll now
look at where on the server your I/O waits are occurring. This is important because
I/O waits are often a neglected cause of slow SQL Server performance.

11.11 Finding I/O waits
SQL Server systems often have plenty of memory and processing power. Another com-
ponent that influences system performance is the I/O subsystem. Perhaps because it
isn’t a plug-in-and-go module, or maybe because it’s viewed as difficult to optimize,
the I/O subsystem is often left in a suboptimal state. In my experience, the most com-
mon cause of poorly performing systems is the I/O subsystem.

 You can examine, at both the database and the individual file levels, the perfor-
mance of the physical disks that the data resides on using the DMV sys.dm_io_
virtual_file_stats. This DMV accepts two parameters, namely, the database_id and the
file_id, which limit the database and file under investigation. In our examples, we’re
interested in all the files on all the databases, so we supply NULL parameter values to
the DMV.

 The output from this DMV will allow you to concentrate on the database that has
the most I/O waiting. You can drill into the underlying files in the database to exam-
ine the individual files that have the most I/O waits. If you know the disks these files
reside on, you can target your investigation on improving these.

11.11.1 I/O waits at the database level

Waiting on I/O is a primary cause of poor server performance. Identifying the data-
base having the most I/O waiting (stalls) is a great starting place for further investiga-
tion. The script we use to determine the amount of IO waiting by each database is
shown in the following listing.

SET TRAN ISOLATION LEVEL READ UNCOMMITTED

SELECT DB_NAME(database_id) AS [DatabaseName]
 , SUM(CAST(io_stall / 1000.0 AS DECIMAL(20,2))) AS [IO stall (secs)]
 , SUM(CAST(num_of_bytes_read / 1024.0 / 1024.0 AS DECIMAL(20,2)))
 AS [IO read (MB)]
 , SUM(CAST(num_of_bytes_written / 1024.0 / 1024.0 AS DECIMAL(20,2)))
 AS [IO written (MB)]
 , SUM(CAST((num_of_bytes_read + num_of_bytes_written)
 / 1024.0 / 1024.0 AS DECIMAL(20,2))) AS [TotalIO (MB)]
FROM sys.dm_io_virtual_file_stats(NULL, NULL)
GROUP BY database_id
ORDER BY [IO stall (secs)] DESC

One DMV is involved in determining how much I/O waiting occurs for each database
on the server instance; see table 11.10 for a brief description of it.

Listing 11.9 I/O stalls at the database level
www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 11 Useful scripts
The script calculates the number of stalls (waits) that occur per database by summing
the content of the column io_stall for each database. The value is divided by 1000 to
convert the millisecond value to a value in seconds. The amount of reads, writes, and
total I/O is recorded. The results are ordered by the IO stall value.

 An example of the type of output for this query is shown in figure 11.10.

Figure 11.10 shows the result of running the “I/O stalls at the database level” script.
The columns that are output show the I/O stalls, number of reads, number of writes,
and total I/O, per database.

 It’s possible for you to drill down further into the poorly performing files on the
databases; we’ll look at this next.

11.11.2 I/O waits at the file level

Having identified the database with the most IO stalls, you can drill down further on
the individual files in that database to get more detailed information on where the
stalls are occurring. Knowing this information allows you to target your investigation
and improvements to those files and underlying disks. The script to determine the
amount of I/O waiting by file per database is shown here.

SET TRAN ISOLATION LEVEL READ UNCOMMITTED

SELECT DB_NAME(database_id) AS [DatabaseName]
 , file_id
 , SUM(CAST(io_stall / 1000.0 AS DECIMAL(20,2))) AS [IO stall (secs)]
 , SUM(CAST(num_of_bytes_read / 1024.0 / 1024.0 AS DECIMAL(20,2)))
 AS [IO read (MB)]
 , SUM(CAST(num_of_bytes_written / 1024.0 / 1024.0 AS DECIMAL(20,2)))
 AS [IO written (MB)]

Table 11.10 I/O waits per database DMV

DMV Description

sys.dm_io_virtual_file_stats Contains details of I/O statistics for the data and log files

Listing 11.10 I/O stalls at the file level

Figure 11.10
Output showing the number
of I/O stalls per database
www.it-ebooks.info

http://www.it-ebooks.info/

309Finding I/O waits
 , SUM(CAST((num_of_bytes_read + num_of_bytes_written)
 / 1024.0 / 1024.0 AS DECIMAL(20,2))) AS [TotalIO (MB)]
FROM sys.dm_io_virtual_file_stats(NULL, NULL)
GROUP BY database_id, file_id
ORDER BY [IO stall (secs)] DESC

The listing shows that one DMV is involved in determining how much I/O wait-
ing occurs for each file per database on the server instance; it’s briefly described
in table 11.11.

The script calculates the number of stalls (waits) that occurs per database, by summing
the content of the column io_stall for each file per database. The value is divided by
1000 to convert the millisecond value to a value in seconds. Additionally, the amount of
reads, writes and total I/O is recorded. The results are ordered by IO stall value.

 An example of the type of output for this query is shown in figure 11.11. This fig-
ure shows the result of running the “I/O stalls at the file level” script. The columns
that are output show the I/O stalls, number of reads, number of writes, and total I/O,
per database.

 You can map the identified file_id to the underlying physical file, using the follow-
ing SQL statement:

SELECT DB_NAME(DB_ID()) AS DatabaseName, file_id, name, physical_name
FROM sys.database_files

This SQL statement allows you to investigate the physical disks that the poorly per-
forming I/O resides on. Investigating the type and configuration of these disks should
be the starting point for improving I/O performance.

Table 11.11 DMV used to find the number of I/O waits per file, per database

DMV Description

sys.dm_io_virtual_file_stats Contains details of I/O statistics for the data and log files

Figure 11.11 Output showing the number of I/O stalls per file, per database
www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 11 Useful scripts
11.11.3 Average read/write times per file, per database

It’s also possible to identify poorly performing files and disks by obtaining the average
read and write times per file for each database on the server instance. These should be
below 20 milliseconds. The script you use to determine the average read and write
time (in milliseconds) by file per database is shown in the listing that follows.

SET TRAN ISOLATION LEVEL READ UNCOMMITTED

SELECT DB_NAME(database_id) AS DatabaseName
 , file_id
 , io_stall_read_ms / num_of_reads AS 'Average read time'
 , io_stall_write_ms / num_of_writes AS 'Average write time'
FROM sys.dm_io_virtual_file_stats(NULL, NULL)
WHERE num_of_reads > 0 and num_of_writes > 0
ORDER BY DatabaseName

Here one DMV is used to determine the average read and write times for each file
per database on the server instance. The average read time is calculated by dividing
the read stall time (io_stall_read_ms) by the number of reads (num_of_reads). Simi-
larly, the average write time is calculated by dividing the write stall time (io_stall_
write_ms) by the number of writes (num_of_writes). The results are ordered by data-
base name.

 Again, the file_id can be mapped to the underlying physical file by using the SQL
statement, relating to sys.database_files, given previously.

 Sample output for this query is shown in figure 11.12.
 Figure 11.12 shows the result of running the “Average read/write times per file,

per database” script. The columns that are output show the average read and write
times per file, per database. Any values over 20 milliseconds should be investigated as
a matter of priority.

Listing 11.11 Average read/write times per file, per database

Figure 11.12
Output showing the average read and
write times per file, per database
www.it-ebooks.info

http://www.it-ebooks.info/

311A simple lightweight trace utility
Having discussed how much read/write time each database is using, we’ll now look at
a useful and lightweight trace utility, which might reduce your reliance on SQL
Server’s own Profiler tool.

11.12 A simple lightweight trace utility
In many ways, this next script is my favorite. It provides functionality similar to SQL
Server’s profiler but uses fewer resources, uses existing DMV data, and aggregates the
results for me. The script discussed in the previous section will allow you to determine
how long each of your SQL statements in the routine you’re monitoring will take to
run. It’s a short step to create a simple, lightweight SQL trace utility.

 If you typically use the inbuilt Profiler utility to identify which statements take a
long time, then I think you’ll find that the DMV equivalent included here is superior
in terms of ease of use and resource usage.

 If you replace the query you want to investigate with a WAITFOR DELAY statement
and remove the filtering in of the query you’re investigating, you’ll monitor all the
statements that are running over the time period you specify in the WAITFOR DELAY
statement. In this example, the time period is one minute, but you may want to alter
this time interval to suit your needs.

 The script you’ll use to create your simple trace utility is shown here.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset, statement_end_offset
INTO #PreWorkQuerySnapShot
FROM sys.dm_exec_query_stats

WAITFOR DELAY ‘00:01:00’

SELECT
 sql_handle, plan_handle, total_elapsed_time, total_worker_time
 , total_logical_reads, total_logical_writes, total_clr_time
 , execution_count, statement_start_offset
 , statement_end_offset, last_execution_time
INTO #PostWorkQuerySnapShot
FROM sys.dm_exec_query_stats

SELECT
 p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0) AS [Duration]
 , p2.total_worker_time - ISNULL(p1.total_worker_time, 0) AS [Time on CPU]
 , (p2.total_elapsed_time - ISNULL(p1.total_elapsed_time, 0))
 - (p2.total_worker_time - ISNULL(p1.total_worker_time, 0))
 AS [Time waiting]
 , p2.total_logical_reads - ISNULL(p1.total_logical_reads, 0) AS [Reads]
 , p2.total_logical_writes - ISNULL(p1.total_logical_writes, 0)
 AS [Writes]

Listing 11.12 Simple trace utility

Store pre-work
query counters

B

Record what happen
in 1 minute

C
Store post-work
query counters

D

Calculate metricsE
www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 11 Useful scripts
 , p2.total_clr_time - ISNULL(p1.total_clr_time, 0) AS [CLR time]
 , p2.execution_count - ISNULL(p1.execution_count, 0) AS [Executions]
 , p2.last_execution_time
 , SUBSTRING (qt.text,p2.statement_start_offset/2 + 1,
 ((CASE WHEN p2.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE p2.statement_end_offset
 END - p2.statement_start_offset)/2) + 1) AS [Individual Query]
 , qt.text AS [Parent Query]
 , DB_NAME(qt.dbid) AS DatabaseName
FROM #PreWorkQuerySnapShot p1
RIGHT OUTER JOIN
#PostWorkQuerySnapShot p2
 ON p2.sql_handle = ISNULL(p1.sql_handle, p2.sql_handle)
 AND p2.plan_handle = ISNULL(p1.plan_handle, p2.plan_handle)
 AND p2.statement_start_offset =
 ISNULL(p1.statement_start_offset, p2.statement_start_offset)
 AND p2.statement_end_offset =
 ISNULL(p1.statement_end_offset, p2.statement_end_offset)
CROSS APPLY sys.dm_exec_sql_text(p2.sql_handle) as qt
WHERE p2.execution_count != ISNULL(p1.execution_count, 0)
ORDER BY DatabaseName, [Parent Query]
 , p2.statement_start_offset

DROP TABLE #PreWorkQuerySnapShot
DROP TABLE #PostWorkQuerySnapShot

First you take a snapshot of the current DMV sys.dm_exec_query_stats performance
metrics B, and next you wait for a given time interval (one minute in this example)

C. Then you take another snapshot of the latest sys.dm_exec_query_stats perfor-
mance metrics D. The differences between the two DMV snapshots are calculated E.
Finally, the output is sorted by the Individual Query’s offset within the Parent Query,
for a given database F.

 An example of the type of output for this query is shown in figure 11.13.
 Figure 11.13 shows the result of running the “Simple trace utility” script. The col-

umns that are output show the duration, time on the CPU, time spent waiting (or
being blocked), the number of reads and writes, the number of executions, the last
time the query was executed, the text of both the Individual Query and the Parent
Query, and the database name. The rows are sorted by the offset of the Individual

Sort by
statement offsetF

Figure 11.13 Output showing which queries run over a given time interval
www.it-ebooks.info

http://www.it-ebooks.info/

313Some best practices
Query within its Parent Query, within the database (because the same query might
run on different databases during the period under investigation).

 This utility has several advantages over the trace utility that comes with SQL Server.
It uses fewer resources, because the DMV information is already being recorded. This
makes it more amenable to being run in a production environment. Additionally,
owing to the accumulative nature of DMVs, it automatically calculates the cumulative
cost of any of the queries that run during the period being monitored. Finally,
although you might not have permission to run a trace in a production environment,
owing to its innocuous nature it should be possible to run this lightweight trace utility.

 We’ll now discuss some SQL Server best practices I’ve come across in recent times.

11.13 Some best practices
There are many articles relating to performance tuning. Rather than repeat some of
the more common ones, I’d like to add some that I think are often overlooked. Some
of the more common best practices can be seen in the Microsoft checklist given here:
http://msdn.microsoft.com/en-us/library/ff647681.aspx.

 As always, you should test any changes you make (perhaps using the test harness
provided previously in this chapter). Often we assume something should behave in a
given manner, but testing shows it doesn’t.

 A brief description of some of these neglected SQL best practices is shown in
table 11.12.

Table 11.12 Some best practices

Best practice Description

Cache function values. Functions are great for providing modularity and reusability. For small
amounts of data, their use in SELECT lists or WHERE or JOIN clauses may
be okay. But when the amount of data increases, they typically cause the
query’s performance to degrade. Even if the same parameters are passed
to the function, it’s called for each row in the result set.

To get around this problem, where possible, the results of the function
calls should be cached and the cached values used in any SELECT list or
WHERE or JOIN clause.

Use temporary tables
instead of table
variables for large
data volumes.

Table variables and temporary tables both use the tempdb database. Typi-
cally, table variables perform faster for small amounts of data. But when
the amount of data increases, temporary tables often result in faster que-
ries. One of the reasons for this is they produce statistics that often result
in a better query plan, used by subsequent queries.

Consider replacing your
IN clause.

Often it’s easy to write a query using an IN clause. But when the number of
values in the IN clause increases, it seems to degrade the performance of
the query. I’ve seen this happen even when the number of entries in the IN
clause increases from two to four entries.

When this occurs, I’d suggest you cache the results of the IN clause into a
temporary table that can be INNER JOINed to the main SQL query.
www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ff647681.aspx
http://www.it-ebooks.info/

314 CHAPTER 11 Useful scripts
Hopefully you’ll find these best practices useful in your day-to-day work. Best practices
can change as the systems and releases themselves change. Be sure to test any best
practices, perhaps using the “Generic performance test harness” script provided in
this chapter.

11.14 Where to start with performance problems
It can be difficult to know where to start when you’re presented with a server, data-
base, or query that you’re told isn’t performing well. In this section I’ll walk you
through a few approaches that should take the guesswork out of the investigation and
have proven successful for me. Also, remember that all the scripts in this book should
provide a great starting point for identifying and providing solutions to your SQL
Server problems.

11.14.1 Starting with a slow server or database

Sometimes you’re informed that a given server or database isn’t performing well.
Although this isn’t much information to go on, you can use it as a starting point to
determine why queries are running slowly.

Make your SQL simpler. The optimizer typically has a limited amount of time to produce a good
query plan. The more SQL statements you have in a batch, the less time it
seems to use in determining this optimal plan. I’ve seen many queries run
faster, with a better query plan, because of simplifying the SQL query.

If you have large
tables, consider using
partitions.

If you have the Enterprise version of SQL Server, you might want to con-
sider using partitions. Here, a table can be divided logically, perhaps by
some datetime column. Typically, only the latest data is queried often. If
this latest data has its own partition, it can have its own indexes, which
can be optimized independent of the rest of the large table. Other advan-
tages include quicker defragmentation, potentially less contention/block-
ing, and sometimes quicker backups and restores.

If you have large tables,
consider using data
compression (in 2008
and higher).

If you have the Enterprise version of SQL Server, you might want to con-
sider using data compression. Most database problems seem to relate to
I/O problems. With data compression, more data can be stored on a page;
this means more data can be obtained for each read. Because reads are
typically much more prevalent than writes (even on OLAP systems), data
compression typically, on balance, improves database performance.

Additional benefits include faster backups and restores, together with the
associated advantages of space and cost savings.

If all else fails, rewrite
your queries.

Sometimes, it seems nearly impossible to improve the performance of
some SQL queries. Even following all the generally accepted approaches
doesn’t seem to give the desired results. When this occurs, it makes sense
to rewrite the query. This seems to give the optimizer new paths and oppor-
tunities to optimize the query.

Table 11.12 Some best practices (continued)

Best practice Description
www.it-ebooks.info

http://www.it-ebooks.info/

315Where to start with performance problems
 First, you can obtain a list of wait states for the server instance (for details of how to
do this, see chapter 6). This will show you, collectively for all the queries run on the
server instance since the last reboot or restart, why the SQL queries have been unable
to run quickly.

 Use the wait states that have high values to determine what to do next. Ideally, you
should inspect the performance (PerfMon) counters that relate to the wait states that
have high values (for details of how to do this, see chapter 6). This allows you to corre-
late and corroborate these results.

 For example, if the wait states give high values for I/O type waits, you can look at
the corresponding I/O PerfMon counters. Having cross-checked the wait states with
the PerfMon counters, you can then get a list of the queries that have the most I/O.
How these queries are used subsequently is discussed in the next subsection (“Starting
with slow queries”).

 Because results are typically provided for the server instance level, with the name
of the database identified as a column in the output, the results can also be used to
identify the troublesome database on the server instance. This database will be tar-
geted for further investigation.

 Both the wait states and performance counters are cumulative, so it might be
advantageous to obtain a DMV snapshot delta over a given time period of typical data-
base activity or for the query under investigation to provide an up-to-date illustration
of any problems. You could use the results of this snapshot delta to determine what
you should drill down into to further investigate the problem (see chapter 2 for
details of how to calculate a DMV snapshot delta).

 As you can see from this example, the output of the wait states drives the path you
use to drill down further into the queries. Having discussed how to identify the high-
level cause of poor performance at the server instance or database level, we’ll now
drill down into the specific queries.

11.14.2 Starting with slow queries

When you’re told a query or batch is performing slowly, or you’ve identified the
poorly performing queries as a result of wait states analysis, you should determine, at
as low a level as is feasible, how the query performs its work. This typically means
inspecting its cached plan for details of what it’s doing. For example, is the query
using a lot of I/O because it’s performing table or index scans as opposed to seeks and
lookups? Or maybe indexes are missing?

 Because the cached plan may not show a true picture of why a query is performing
slowly (because when the plan is created it doesn’t know about the impact of other
concurrent queries), it makes sense to profile the query using the DMV trace utility
described earlier in this chapter. This will allow you to focus on the part of the query
or batch that’s having the most impact on poor performance.
www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 11 Useful scripts
 Most of this book is concerned with how you can identify queries that are, for vari-
ous reasons, running suboptimally. This book also contains details on how to improve
the query performance.

 Ideally, the query under investigation should form part of the various DMV snap-
shot deltas, allowing you to determine the effect of this query on the various DMVs
and how it interacts with other running queries. Most of the scripts in this book can be
used to produce these DMV snapshot deltas; indeed, several examples have been pro-
vided. Inspecting the output, in the context of the scripts provided in this book,
should help you decide what path to follow next to improve the query’s performance.

 The example given here has been for queries that have high I/O values, which was
reflected in the high values for I/O in the wait states script. You could use the wait
states script similarly as the starting point for other troublesome queries that result in
a poorly performing server or database.

11.15 Summary
This chapter has been a mixed bag of scripts. Hopefully it has shown you what’s possi-
ble with the scope and depth of DMV data that’s available.

 We investigated how to see what everyone’s last-run query was, which could prove
useful in resolving conflicts. A generic performance test harness was provided. This
should be useful in quickly determining if a proposed performance improvement is
actually useful.

 For administrators, I provided a useful little script for estimating when backups or
restores should finish. In addition, there’s a script to determine the amount of mem-
ory and the number of CPUs on a given SQL Server.

 To help with debugging, I provided a script that shows where the time is spent
within a batch of SQL queries. This was contrasted with what is provided by the query
plan. The simple and lightweight trace utility should prove useful in helping to
quickly and easily identify performance problems and program flow.

 Congratulations, you’ve reached the end of the book! I hope you agree that the
scripts included in this book allow you to identify problem areas quickly, easily, and
cheaply, and that you’ve found many possible solutions to these problems.
www.it-ebooks.info

http://www.it-ebooks.info/

index
A

ACID properties 205
atomic 205
consistent 205
durable 205
isolated 205

active session 218
ad hoc query 39, 49, 93
aggregated results 8, 93
ASYNC_IO_COMPLETION 151, 171
ASYNC_NETWORK_IO 151
automatically disable or drop unused indexes 281
automatically implement missing indexes 279
automatically rebuild/reorganize indexes 264
automatically update a routine’s statistics 25, 276
average read/write times per file per database 310

B

batch 49
BEGIN TRAN 197
best practices 313

cache function values 313
consider replacing your IN clause 313
consider using data compression 314
consider using partitions 314
make your SQL simpler 314
Microsoft checklist 313
rewrite your queries 314
use temporary tables 313

blocking
blocking the same as waiting 104
how to reduce 221

reducing 32
use of cached plans 160

blocks 202
Buffer Cache Hit Ratio 161

C

cached plan 24, 49, 93
clearing 93
data type conversions 46
finding 18, 94
improving 131
index lookups 46
inspection 28
missing indexes 44
missing statistics 45
reading 43
retrieval 37
table scans 45
use in blocking 160
XML 15, 20, 38, 44, 120

CAST 100, 105, 107
catalog views 24
CATCH 197
change data capture, DMV group 5
clearing DMVs 22
clearing the cached plans 93

flushed cache 94
memory pressures 94
reboots/restarts 94

CLR. See Common Language Runtime
clustered index 56
COALESCE 40
COMMIT 197
317

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX318
Common Language Runtime (CLR) 5, 49, 174
advantages over SQL 175
assemblies information 193
CLR DMV and other DMVs 188
CLR integration 192
CLR regular expression functions 179
DMV group (CLR) 5
introducing 175
.NET framework performance tips 181
queries spending most time in CLR 183

snapshot version 186
regular expression functions 176, 179
simple CLR example 176
SQL CLR assemblies information 193
view deployed assembly 179
viewing CLR function with Reflector 179

common patterns
building dynamic SQL 47
calculating DMV changes 40
common terms 49
creating an empty temporary table 34
extracting the Individual Query 38
identify the underlying database 39
looping over the databases 35
printing the content of large variables 48
reading cached plans 43
reducing blocking 32
restricting output by using the TOP

command 33
restricting output using WHERE 32
retrieving a query’s cached plan 37
using CROSS APPLY 32

common terms 49
common waits 148
compatibility level 50
compatibility views 24
composite index 56
compression 61, 222, 297, 314
connections 206
contended resources 209
CONVERT_IMPLICIT 46, 125
covered index 56
CPU pressure 149
CREATE STATISTICS 121
CROSS APPLY 32
Customer Relationship Management systems 29
CXPACKET 151

D

data type 49
data type conversions 46, 124

implicit 125
database mirroring, DMV group 5

database structure hierarchy 201
database 201
extent 201
heap or B-tree 201
key 201
page 201
row 201
table 201

Database Tuning Advisor 27, 64, 83
database, DMV group 5

identify underlying 39
database-level DMVs 226

index contention 240
session usage in tempdb 231
space usage in tempdb 227
task usage in tempdb 235
tempdb recommendations 239

DB_NAME 33, 208
dba_BlockTracer 11
dba_WhatSQLIsExecuting 11
DBCC FLUSHPROCINDB 23
DBCC FREEPROCCACHE 23
DBCC SHOW_STATISTICS 59
DBCC SQLPERF 148
DBCC TRACEON (1222, -1). 203
DEADLOCK_PRIORITY 204
deadlocks 203

how to reduce 224
pattern for code retries 203

determining impact of system upgrade 290
diagnosing problems 9
disable indexes 69
DMF 7, 49
DMV. See Dynamic Management Views
DMV categories

change data capture 5
Common Language Runtime 5
database 5
database mirroring 5
execution 5
full-text search 5
index 5
input/output 6
object 6
query notification 6
replication 6
Resource Governor 6
security 6
Service Broker 6
SQL Server extended 5
SQL Server Operating System 6
transaction 6

DMV changes. See DMV snapshot
DMV companions 23
DMV examples. See script examples
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 319
DMV snapshot 137
calculating DMV changes 40
capturing DMV data periodically 172
who’s doing what, and when 298

DMV snapshot delta 49, 137
DMVStats 94
Dynamic Management Views (DMVs) 3, 49

2005 onwards 8
aggregated results 8
clearing 22
impact 8
internal data 7
limitations 43, 142, 186, 252
major groups 5
other tools, and

cached plan inspection 28
context 26
Database Tuning Advisor 27
Performance Monitor 27
SQL Server Profiler 26

permissions 22
preparing to use 22
problems can solve 9
what they are 4

dynamic SQL 47

E

empty temporary table 34
enabled Enterprise features 297
escalated indexes 243
ESCAPE 96
estimating job’s end time 293
everyone’s last-run SQL query 286
executed queries

aggregated results 93
DMV snapshot delta 137
find a cached plan 94
longest-running queries 98
most-blocked queries 103
queries being recompiled 144
queries run in time interval 134
queries running slower than normal 127
queries with datatype conversions 124
queries with missing indexes 123
queries with table scans 127
understanding 93
unused stored procedures 132
where a query is used 97

execution_count 14, 100, 105, 107, 110–111
execution, DMV group 5
extended events, DMV group 5
extent 201
extracting Individual Query 38

F

fill factor 58, 82
filtered index 56
find a cached plan 18, 94
flushed cache 94
FLUSHPROCINDB 23
fragmentation 60, 264
fragmented indexes, impact 77
FREEPROCCACHE 23
full-text search, DMV group 5

G

generic performance test harness 287
get system information 295
GO statement 12

H

heap 56, 201
high-maintenance indexes 69

impact 71
holistic approach to managing indexes 90

I

I/O 49
I/O subsystem 61
I/O waits

database level 307
file level 308

identify underlying database 39
idle session 213, 215, 218
impact of running DMVs 8
impedance 130
importance of indexes 56, 81
included columns 57, 82
index access 82

lookup 57
scan 57
seek 57

index contention 240
how many rows changed 252
indexes with most page splits 245
most latch contention 247
most page I/O-latch contention 248
most row-locking pressure 241
most-escalated indexes 243
row-locking pressure, snapshot version 249
unsuccessful index lock promotions 244

index fragmentation 82
index lookup 46, 57
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX320
index performance 58
compression 61
fill factor 58
fragmentation 60
I/O subsystem 61
statistics 59

index rebuild 61, 77, 264, 268
index reorganization 61, 264
index scan 57
index seek 57
index type 56

clustered 56
composite 56
covered 56
filtered 56
nonclustered 56

indexes 5, 25, 49, 55
access 57
compression 61
disabling 69
disabling or dropping 282

automatically 281
DMV group 5
fill factor 58
fragmentation 60
high-maintenance indexes 69
holistic approach 90
I/O subsystem 61
importance 56, 81
included columns 57, 82
most missing indexes 83
most-costly missing indexes 62
most-costly unused indexes 65
most-fragmented indexes 75
most-used indexes 72
not used at all 85
state of your statistics 87
statistics 59
unused indexes 281
used by given routine 78

Individual Query 38
INFORMATION_SCHEMA.COLUMNS 126
input/output, DMV group 6
intelligently update statistics 268
IO_COMPLETION 152, 171
is_auto_create_stats_on 122
is_auto_update_stats_async_on 123
is_auto_update_stats_on 122
IsMsShipped 67
isolation levels 223

Read Committed 206
Read Committed Snapshot 206
Read Uncommitted 206
Repeatable Read 206

Serializable 206
Snapshot 206

K

known problems that may affect scripts 50
Knuth, Donald 10

L

large tables 25, 121, 222, 314
LATCH 151, 171
LCK 151
leaf_delete_count 255
leaf_ghost_count 255
leaf_insert_count 255
leaf_update_count 255
LIKE 124, 127
LIKE pattern matching 96
lock 49
lock escalation 220
lock types 201

Bulk Update (BU) 202
Exclusive (X) 201
Intent Exclusive (IX) 201
Intent Shared (IS) 201
Key Range 202
Schema Modification (Sch-M) 202
Schema Stability (Sch-S) 202
Shared (S) 201
Shared with Intent Exclusive (SIX) 201
Update (U) 201

LOCK_ESCALATION 221
LOCK_TIMEOUT 223
locks 200

contended resources 209
escalation 220

locks, blocks, and deadlocks 200
LOGMGR 171
longest-running queries 98
looping over the databases 35
looping over the tables 35

M

memory pressures 94
memory usage by table/index 304
memory usage per database 303
mismatched column data types 125
missing indexes 15, 20, 44, 62, 123

automatically implement 279
impact 62, 64

missing statistics 45
monitoring 10
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 321
most common waits (snapshot version) 152
most latch contention 247
most missing indexes 83
most page I/O-latch contention 248
most page splits 245
most-blocked queries 103
most-costly missing indexes 62
most-fragmented indexes 75
most-used indexes 72

impact 74

N

.NET performance tips 181
cache data when possible 183
connection pooling 183
correct data structures 182
data types 182
error handling 183
generics 182
IDispose 182
loops 182
make chunky calls 182
reference/value types 182
reflection 183
return multiple resultsets 183
StringBuilder 182
using statement 182

NOLOCK 102, 206
nonclustered index 56

O

object, DMV group 6
OFFLINE database 50
OPTIMIZE FOR 132
OPTION (RECOMPILE) 132
other tools

cached plan inspection 28
context 26
Database Tuning Advisor 27
Performance Monitor 27
SQL Server Profiler 26

P

page 56, 201
Page Life Expectancy 161, 306
PAGEIOLATCH 151, 171
PAGELATCH 151, 171
parameter sniffing 259
Parent Query 38
pattern matching 96

patterns
building dynamic SQL 47
calculating DMV changes 40
common terms 49
creating an empty temporary table 34
extracting the Individual Query 38
identify the underlying database 39
looping over the databases 35
printing the content of large variables 48
reading cached plans 43
reducing blocking 32
restricting output by using the TOP

command 33
restricting output using WHERE 32
retrieving a query’s cached plan 37
using CROSS APPLY 32

performance counters 162, 164
% Disk Time 163
% Processor Time 163
% User Time 163
Available Bytes 163
Avg. Disk Queue Length 163
Bytes Total/sec 163
Current Disk Queue Length 163
Memory 163
Network Interface (network card) 163
Pages/sec 163
Physical Disk 163
Processor 163

performance counters and wait states 165, 168
Performance Monitor 27
performance problems, where to start 314
performance tuning 10
performance, targeting 43
permissions 22
Plan Caching in SQL Server 2008 144
plan guides 132
plan_handle 23, 38, 95

Q

queries
assessing the effect of running a query 137
being recompiled 144
run in time interval 134
running slower than normal 127
spending most time in CLR 183

snapshot version 186
where query really spends its time 300
with data type conversions 124

queries, executed
aggregated results 93
DMV snapshot delta 137
find a cached plan 94
longest-running queries 98
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX322
queries, executed (continued)
most-blocked queries 103
queries being recompiled 144
queries run in time interval 134
queries running slower than normal 127
queries with datatype conversions 124
queries with missing indexes 123
queries with table scans 127
understanding 93
unused stored procedures 132
where a query is used 97

query notification, DMV group 6
query plan 49
query status 158

R

RAM, how much do I need? 304
range_scan_count 255
read committed 206
read uncommitted 206
reboots/restarts 94
recompilation 144
recompiling slow routines 259
Reflector 179
removing indexes 69
repeatable read 206
replication, DMV group 6
reporting database 29
requests 206
Resource Governor, DMV group 6
restricting output 32
ROLLBACK 197
ROUND function 63
row 56, 201
row-locking pressure 241

snapshot version 249

S

script 49
script examples

automatically disable or drop unused
indexes 281

automatically implement missing indexes 279
automatically rebuild/reorganize indexes 264
automatically updating a routine’s statistics 276
building dynamic SQL 47
cached plan retrieval 37
capturing DMV data periodically 172
CLR integration 192
CLR regular expression functions 179
common waits (snapshot version) 152

contended resources 209
basic version 209
enhanced version 210

current locks 207
default statistics properties 122
determining impact of system upgrade 290
disparate column types 125
DMV snapshot delta 137
empty temporary table 34
enabled Enterprise features 297
estimating job’s end time 293
everyone’s last-run SQL query 286
extracting Individual Query 38
find a cached plan 18, 94
find where query used 97
fragmented indexes 75
generic performance test harness 287
get system information 295
high-maintenance indexes 69
how many rows changed 252
identify underlying database 39
inactive sessions with open transactions 212
index used by routine 78
indexes are not used at all 85
indexes under row-locking pressure, snapshot

version 249
indexes with most latch contention 247
indexes with most page I/O-latch

contention 248
indexes with most page splits 245
intelligently update statistics 268
longest-running queries 98
looping over databases 35
memory usage by table/index 304
memory usage per database 303
missing indexes 15
most common waits 148
most missing indexes 83
most row-locking pressure 241
most time in CLR (snapshot version) 186
most-blocked queries 103
most-costly missing indexes 62
most-costly unused indexes 65
most-escalated indexes 243
most-used indexes 72
observing the current locks 199
performance counters and wait states 165
performance counters changes 164
printing large variables 48
queries being recompiled 144
queries run in time interval 134
queries running slower than normal 127
queries spending most time in CLR 183
queries with datatype conversions 124
queries with missing indexes 123
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 323
script examples (continued)
queries with table scans 127
recompiling slow routines 259
resources waiting on 157
restricting output using WHERE 32
session usage of tempdb space 232
simple CLR example 176
simple monitor 11
simpler monitor 13
size of all the files 229
slowest queries 14
space not reclaimed 233
space used by queries 235
SQL CLR assemblies information 193
SQL running now 17
SQL text retrieval 37
tempdb total space usage by object type 230
time-based intelligent statistics update 272
TOP command 33
total, free, and used space 228
trace utility, simple, lightweight 311
transaction-based case study 198
unsuccessful index lock promotions 244
unused stored procedures 132
used and reclaimed space 237
viewing current locks 199
waiting due to active sessions 217
waiting due to transaction locks 214
waiting for more than 30 seconds 219
what’s blocking my SQL 158
where query really spends its time 300
who’s doing what, and when 298
why queries waiting 154

searching for queries 115
security, DMV group 6
self-healing database 28, 257

automatically disable or drop unused
indexes 281

automatically implement missing indexes 279
automatically rebuild/reorganize indexes 264
automatically updating a routine’s statistics 276
automation 258
intelligently update statistics 268
recompiling slow routines 259
time-based intelligent statistics update 272

serializable 206
server instance 49
server waits 148
Service Broker, DMV group 6
session id 12
sessions 206

inactive 212
sessions, connections, and requests 206
SET TRANSACTION ISOLATION LEVEL READ

UNCOMMITTED 13, 32

SharePoint 29
short-duration queries 101
short-duration queries

accumulative effect 101
SHOW_STATISTICS 59
singleton_lookup_count 255
slowest queries 14
snippet. See script
SOS_SCHEDULER_YIELD 152
sp_configure 181
sp_executesql 47–48, 258, 263, 266–267, 271, 275
sp_MSForEachDB 35, 37, 67, 71, 74, 76, 86, 267
sp_MSForEachTable 35
sp_who2 11
space usage 227
spid 12
SQL running now 17
SQL Server agent 258
SQL Server compatibility level 50
SQL Server extended 5
SQL Server Operating System, DMV group 6
SQL Server performance counters 160

Batch Requests/sec 161
Buffer Cache Hit Ratio 161
correlating wait states and performance

counters 171
Forwarded Records/sec 161
Full Scans/sec 161
Lock Waits/sec 162
Memory Grants Pending 162
Page Life Expectancy 161
performance counters and wait states 165, 168
performance counters changes 164
Processes Blocked 162
SQL Compilations/sec 161
SQL Re-Compilations/sec 161
SQLServer:Access Methods 161
SQLServer:Buffer Management 161
SQLServer:General Statistics 162
SQLServer:Latches 161
SQLServer:Locks 162
SQLServer:Memory Management 162
SQLServer:SQL Statistics 161
Table Lock Escalations/sec 161
Target Server Memory (KB) 162
Total Latch Wait Time (ms) 161
Total Server Memory (KB) 162

SQL Server Profiler 26
SQL text retrieval 37
sql_handle 7, 23, 105
SQLTRACE_BUFFER_FLUSH 152
SSMS 50
statistics 25, 59, 81, 87

automatically updated 25, 276
current status 87
default properties 122
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX324
statistics (continued)
importance 89, 121
staleness 25

STATISTICS IO 10
STATISTICS TIME 10
STATS_DATE 89
stored procedure 50
SUBSTRING 39
sys.allocation_units 305
sys.assemblies 179, 194
sys.assembly_files 179, 194
sys.database_files 309
sys.databases 50
sys.dm_clr_appdomains 194
sys.dm_clr_loaded_assemblies 194
sys.dm_db_index_operational_stats 241
sys.dm_db_index_physical_stats 8, 76
sys.dm_db_index_usage_stats 67, 70, 73, 80
sys.dm_db_missing_index_details 63, 84
sys.dm_db_missing_index_group_stats 63
sys.dm_db_missing_index_groups 63
sys.dm_db_persisted_sku_features 297
sys.dm_db_session_space_usage 232, 234
sys.dm_db_task_space_usage 236, 238
sys.dm_exec_cached_plans 95
sys.dm_exec_connections 159, 211
sys.dm_exec_plan_attributes 39, 95
sys.dm_exec_procedure_stats 133
sys.dm_exec_query_plan 95, 97, 100, 105
sys.dm_exec_query_stats 97, 100, 105
sys.dm_exec_requests 143, 159, 211
sys.dm_exec_sessions 143, 159
sys.dm_exec_sql_text 95, 97, 100, 105, 211
sys.dm_io_virtual_file_stats 308–309
sys.dm_os_buffer_descriptors 304–305
sys.dm_os_performance_counters 230, 306
sys.dm_os_sys_info 295–296
sys.dm_os_wait_stats 148–149
sys.dm_os_waiting_tasks 159, 216
sys.dm_tran_locks 210–211
sys.dm_tran_session_transactions 213, 216
sys.indexes 67, 70, 73, 76, 80, 88, 241, 270, 305
sys.objects 67, 70, 73, 76, 241
sys.partitions 305
sys.procedures 133
sys.schemas 80, 88, 241
sys.sysindexes 80, 270
sys.sysprocesses 18
sys.system_objects 8
sys.tables 80, 88

T

table scans 45, 127
table variable 313
TableScan 127

tempdb 222, 227
internal objects 227
session usage 231
session usage of tempdb space 232
space not reclaimed 233
space usage by object type 230
space used by queries 235
task usage 235
used and reclaimed space 237
user objects 227
version store objects 228

tempdb recommendations 239
monitor space regularly 240
pre-grow 239
put on own disks 239
set appropriate initial size 239
use multiple data files 240

temporary table 34, 313
test harness 287
time-based intelligent statistics update 272
TIMEOUT value 223
TOP command 33
total_elapsed_time 14, 98, 100, 107
total_worker_time 98, 105, 107
trace utility 311
transaction isolation levels 205
transaction, DMV group 6
transactional database 29
transactions 197

ACID properties 205
contended resources 209
current locks 207
how to reduce blocking 221
how to reduce deadlocks 224
idle sessions 213
inactive sessions 212
isolation levels 205
lock escalation 220
locks, blocks, and deadlocks 200
open 213, 215
overview 197
simple case study 198
typical pattern 197
waiting due to active sessions 217
waiting due to transaction locks 214
waiting for more than 30 seconds 219

TRY 197
T-SQL 50

U

unsuccessful index lock promotions 244
unused indexes 65, 87

automatically disable or drop 281
impact 68
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 325
unused stored procedures 132
UPDATE STATISTICS 122
useful scripts

best practices 313
determining impact of system upgrade 290
enabled Enterprise features 297
estimating job’s end time 293
everyone’s last-run SQL query 286
generic performance test harness 287
get system information 295
memory usage by table/index 304
memory usage per database 303
trace utility 311
where query really spends its time 300
who’s doing what, and when 298

V

VIEW DATABASE STATE 22
VIEW SERVER STATE 22
Visual Studio 176

W

wait states and performance counters 171
wait types 151

ASYNC_IO_COMPLETION 151
ASYNC_NETWORK_IO 151
CXPACKET 151
IO_COMPLETION 152
LATCH 151
LCK 151

PAGEIOLATCH 151
PAGELATCH 151
SOS_SCHEDULER_YIELD 152
SQLTRACE_BUFFER_FLUSH 152
WRITELOG 152

WAITFOR DELAY 43, 137, 154, 276, 300, 311
waiting

blocking the same as waiting 104
what are your submitted queries waiting on 157
what’s blocking my running SQL 158

waits 148
correlating wait states and performance

counters 171
due to locks 214
most common waits 148
most common waits (snapshot version) 152
resources waiting on 157
what’s blocking my running SQL 158
why queries are waiting 154

waits and queues white paper 148
what’s blocking my SQL 158
where a query is used 97
where to start 314

slow queries 315
slow server or database 314
waits and queues white paper 148

who’s doing what, and when 298
WITH RECOMPILE 131–132
WITH(NOLOCK) 102
working with DMVs 26
WRITELOG 152, 171
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Ian W. Stirk

E
very action in SQL Server leaves a set of tiny footprints.
SQL Server records that valuable data and makes it visible
through Dynamic Management Views, or DMVs. You can

use this incredibly detailed information to signifi cantly improve
the performance of your queries and better understand what’s
going on inside your SQL Server system.

SQL Server DMVs in Action shows you how to obtain, interpret,
and act on the information captured by DMVs to keep your sys-
tem in top shape. Th e over 100 code examples help you master
DMVs and give you an instantly reusable SQL library. You’ll also
learn to use Dynamic Management Functions (DMFs), which
provide further details that enable you to improve your system’s
performance and health.

What’s Inside
Many practical solutions
How to correct missing indexes
What’s slowing down your queries
What’s compromising concurrency
Much more

Th is book is written for DBAs and developers.

Ian Stirk is a freelance consultant based in London. He’s an
expert in SQL Server performance and a fi erce advocate
for DMVs.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/SQLServerDMVsinAction

$64.99 / Can $74.99 [INCLUDING eBOOK]

SQL Server DMVs IN ACTION

SQL SERVER ADMINISTRATION

“Essential reference for SQL
 Server Administrators.”
 —Dave Corun, Avanade

“Arm yourself with an arsenal
 of DMV knowledge.”
 —Tariq Ahmed
 Amcom Technology

“Lift s the hood on SQL Server
 performance.”
 —Richard Siddaway, Serco

“Th e examples alone are
 worth twice the price
 of the book!”
 —Nikander and Margriet
 Bruggeman
 Lois & Clark IT Services

M A N N I N G

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	Front cover
	contents
	preface
	acknowledgements
	about this book
	Who should read this book?
	Roadmap
	Code conventions and downloads
	Author Online
	About the author
	About the cover illustration

	Part 1—Starting the journey
	The Dynamic Management Views gold mine
	1.1 What are Dynamic Management Views?
	1.1.1 A glimpse into SQL Server’s internal data
	1.1.2 Aggregated results
	1.1.3 Impact of running DMVs
	1.1.4 Part of SQL Server 2005 onward

	1.2 The problems DMVs can solve
	1.2.1 Diagnosing problems
	1.2.2 Performance tuning
	1.2.3 Monitoring

	1.3 DMV examples
	1.3.1 Find your slowest queries
	1.3.2 Find those missing indexes
	1.3.3 Identify what SQL statements are running now
	1.3.4 Quickly find a cached plan

	1.4 Preparing to use DMVs
	1.4.1 Permissions
	1.4.2 Clearing DMVs

	1.5 DMV companions
	1.5.1 Catalog views
	1.5.2 Cached plans
	1.5.3 Indexes
	1.5.4 Statistics

	1.6 Working with DMVs
	1.6.1 In context with other tools
	1.6.2 Self-healing database
	1.6.3 Reporting and transactional databases

	1.7 Summary

	Common patterns
	2.1 Reducing blocking
	2.2 Using CROSS APPLY
	2.3 Restricting output to a given database
	2.4 Restricting output by using the TOP command
	2.5 Creating an empty temporary table structure
	2.6 Looping over the databases on a server
	2.7 Retrieving a query’s cached plan and SQL text
	2.8 Extracting the Individual Query from the Parent Query
	2.9 Identifying the database used by ad hoc queries
	2.10 Calculating DMV changes
	2.11 Reading cached plans
	2.11.1 Targeting the area of concern
	2.11.2 Things to look out for

	2.12 Building dynamic SQL
	2.13 Printing the content of large variables
	2.14 Common terms and acronyms
	2.15 Known problems that may affect the scripts
	2.15.1 SQL Server compatibility level set to below 2005
	2.15.2 An OFFLINE database

	2.16 Summary

	Part 2—DMV discovery
	Index DMVs
	3.1 The importance of indexes
	3.1.1 Types of index
	3.1.2 Types of index access
	3.1.3 Factors affecting index performance

	3.2 Costly missing indexes
	3.2.1 Finding the most important missing indexes
	3.2.2 The impact of missing indexes

	3.3 Unused indexes
	3.3.1 Finding the most-costly unused indexes
	3.3.2 The impact of unused indexes

	3.4 High-maintenance indexes
	3.4.1 Finding the top high-maintenance indexes
	3.4.2 The impact of high-maintenance indexes

	3.5 Most-frequently used indexes
	3.5.1 Finding the most-used indexes
	3.5.2 The importance of the most-used indexes

	3.6 Fragmented indexes
	3.6.1 Finding the most-fragmented indexes
	3.6.2 The impact of fragmented indexes

	3.7 Indexes used by a given routine
	3.7.1 Finding the indexes used by a given routine
	3.7.2 The importance of knowing which indexes are used

	3.8 Databases with most missing indexes
	3.8.1 Finding which databases have the most missing indexes
	3.8.2 The importance of other databases

	3.9 Completely unused indexes
	3.9.1 Finding which indexes aren’t used at all
	3.9.2 The importance of unused indexes

	3.10 Your statistics
	3.10.1 Finding the state of your statistics
	3.10.2 The importance of statistics

	3.11 A holistic approach to managing indexes
	3.12 Summary

	Improving poor query performance
	4.1 Understanding executed queries
	4.1.1 Aggregated results
	4.1.2 Clearing the cached plans

	4.2 Finding a cached plan
	4.2.1 How to find a cached plan

	4.3 Finding where a query is used
	4.3.1 Identifying where a query is used

	4.4 Long-running queries
	4.4.1 Finding the queries that take the longest time to run
	4.4.2 The impact of long-running queries

	4.5 Queries that spend a long time being blocked
	4.5.1 Finding the queries that spend the longest time being blocked

	4.6 CPU-intensive queries
	4.6.1 Finding the queries that use the most CPU

	4.7 I/O-hungry queries
	4.7.1 Finding the queries that use the most I/O
	4.7.2 Reducing the impact of queries that use the most I/O

	4.8 Frequently executed queries
	4.8.1 Finding the queries that have been executed the most often
	4.8.2 Reducing the impact of queries that are executed most often

	4.9 The last run of a query
	4.9.1 Determining when a query was last run
	4.9.2 Variations on searching for queries

	4.10 Summary

	Further query improvements
	5.1 Queries with missing statistics
	5.1.1 Finding queries that have missing statistics
	5.1.2 The importance of statistics
	5.1.3 Default statistics properties

	5.2 Finding queries that have missing indexes
	5.3 Finding queries that have implicit data type conversions
	5.3.1 Finding implicit data conversions
	5.3.2 Finding disparate column data types

	5.4 Finding queries that have table scans
	5.5 Slower-than-normal queries
	5.5.1 Finding queries that are running slower than normal
	5.5.2 The importance of queries that are running slower than normal

	5.6 Unused stored procedures (2008 only)
	5.6.1 Finding unused stored procedures

	5.7 Looking for SQL queries run during a specific interval
	5.7.1 What runs over a given time period?

	5.8 Relationships between DMV snapshot deltas
	5.8.1 Amalgamated DMV snapshots

	5.9 Currently running queries
	5.9.1 What’s running now?

	5.10 Recompiled queries
	5.10.1 Finding the most-recompiled queries

	5.11 Summary

	Operating system DMVs
	6.1 Understanding server waits
	6.2 Identifying your most common waits
	6.2.1 Why are you waiting?
	6.2.2 Common wait types

	6.3 Identifying your most common waits-snapshot version
	6.3.1 Why are you waiting? (snapshot version)

	6.4 Identifying why queries wait
	6.4.1 Discovering why your queries are waiting

	6.5 Queries that are waiting
	6.6 Finding what’s blocking running SQL
	6.6.1 What’s blocking my SQL query?

	6.7 SQL Server performance counters
	6.7.1 Important non-SQL performance counters

	6.8 Effect of running SQL queries on the performance counters
	6.9 How performance counters and wait states relate
	6.10 SQL queries and how they change the performance counters and wait states
	6.11 Correlating wait states and performance counters
	6.12 Capturing DMV data periodically
	6.13 Summary

	Common Language Runtime DMVs
	7.1 Introducing the CLR
	7.2 A simple CLR example
	7.2.1 Creating a simple CLR class
	7.2.2 Using the SQL CLR regular expression functions

	7.3 .NET Framework performance concerns
	7.4 Time-consuming CLR queries
	7.4.1 Finding the queries that spend the most time in the CLR
	7.4.2 Impact of time-consuming CLR queries

	7.5 Queries spending the most time in the CLR (snapshot version)
	7.5.1 Finding queries that spend the most time in the CLR (snapshot version)

	7.6 Relationships between CLR DMVs and other DMVs
	7.7 Getting information about SQL Server CLR integration
	7.8 Getting information about your SQL CLR assemblies
	7.9 Summary

	Resolving transaction issues
	8.1 Transaction overview
	8.2 A simple transaction-based case study
	8.3 Locks, blocks, and deadlocks
	8.3.1 Locks
	8.3.2 Blocks
	8.3.3 Deadlocks

	8.4 The ACID properties of transactions
	8.5 Transaction isolation levels
	8.6 Sessions, connections, and requests
	8.7 Finding locks
	8.8 Identifying the contended resources
	8.8.1 Contended resources-basic version
	8.8.2 Contended resources-enhanced version

	8.9 Identifying inactive sessions with open transactions
	8.9.1 How idle sessions with open transactions arise
	8.9.2 How to find an idle session with an open transaction

	8.10 Waiting due to transaction locks
	8.10.1 Waiting because of an idle session with an open transaction
	8.10.2 Waiting because of active session transactions only
	8.10.3 Waiting because of both active and idle session transactions

	8.11 Queries waiting for more than 30 seconds
	8.12 Lock escalation
	8.13 How to reduce blocking
	8.14 How to reduce deadlocks
	8.15 Summary

	Database-level DMVs
	9.1 Space usage in tempdb
	9.1.1 What is tempdb?
	9.1.2 Total, free, and used space in tempdb
	9.1.3 Tempdb total space usage by object type

	9.2 Session usage in tempdb
	9.2.1 Session usage of tempdb space
	9.2.2 Space used and not reclaimed in tempdb by session

	9.3 Task usage in tempdb
	9.3.1 Space used by running SQL queries
	9.3.2 Space used and not reclaimed by active SQL queries

	9.4 Tempdb recommendations
	9.5 Index contention
	9.5.1 Indexes under row-locking pressure
	9.5.2 Escalated indexes
	9.5.3 Unsuccessful index-lock promotions
	9.5.4 Indexes with the most page splits
	9.5.5 Indexes with most latch contention
	9.5.6 Indexes with most page I/O-latch contention
	9.5.7 Indexes under row-locking pressure-snapshot version
	9.5.8 How many rows are being inserted/deleted/updated/selected?

	9.6 Summary

	The self-healing database
	10.1 Self-healing database
	10.2 Recompiling slow routines
	10.2.1 Recompiling routines that are running slower than usual

	10.3 Automatically rebuild and reorganize indexes
	10.3.1 Rebuilding and reorganizing fragmented indexes

	10.4 Intelligently update statistics
	10.4.1 Simple intelligent statistics update
	10.4.2 Time-based intelligent statistics update

	10.5 Automatically updating a routine’s statistics
	10.6 Automatically implement missing indexes
	10.6.1 Implementing missing indexes

	10.7 Automatically disable or drop unused indexes
	10.7.1 Disabling or dropping unused indexes

	10.8 Summary

	Useful scripts
	11.1 Viewing everyone’s last-run SQL query
	11.1.1 Find the last-run queries

	11.2 A generic performance test harness
	11.2.1 Using the generic performance test harness

	11.3 Determining the impact of a system upgrade
	11.3.1 Quantifying system upgrade impact

	11.4 Estimating the finishing time of system jobs
	11.4.1 Estimating when a job will end

	11.5 Get system information from within SQL Server
	11.6 Viewing enabled Enterprise features (2008 only)
	11.7 Who’s doing what and when?
	11.8 Finding where your query really spends its time
	11.8.1 Locating where your queries are spending their time

	11.9 Memory usage per database
	11.9.1 Determining the memory used per database

	11.10 Memory usage by table or index
	11.10.1 Determining the memory used by tables and indexes

	11.11 Finding I/O waits
	11.11.1 I/O waits at the database level
	11.11.2 I/O waits at the file level
	11.11.3 Average read/write times per file, per database

	11.12 A simple lightweight trace utility
	11.13 Some best practices
	11.14 Where to start with performance problems
	11.14.1 Starting with a slow server or database
	11.14.2 Starting with slow queries

	11.15 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Back cover

